首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background firing activity was recorded in guinea pig neocortical slices maintained using extracellular techniques. Between 30 and 40% of neurons continued to generate action potentials, although at a reduced rate, when synaptic disruption had been induced by adenosine or adenosine 5-monophosphate action. These cells were classed as endogenously active. No connection could be shown between neuronal firing pattern and capacity for autonomous generation of action potentials. The remaining neurons tested remained inactive after synaptic disruption, but regained their capacity for spontaneous firing following washout. The activity of these cells was classified as exogenous (or the result of synaptic excitation induced by other neurons in the same slice). The majority of cells with a highly regular discharge pattern initially stopped discharging during synaptic blockade and resumed their activity following washout. This would suggest that a miniature excitatory circuit with 30–140 msec cycles operates in these slices.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 816–824, November–December, 1987.  相似文献   

2.
Dynamics of spontaneous activity in neocortical slices.   总被引:15,自引:0,他引:15  
The flow of activity in the cortical microcircuitry is poorly understood. We use calcium imaging to reconstruct, with millisecond and single-cell resolution, the spontaneous activity of populations of neurons in unstimulated slices from mouse visual cortex. We find spontaneous activity correlated among networks of layer 5 pyramidal cells. Synchronous ensembles occupy overlapping territories, often share neurons, and are repeatedly activated. Sets of neurons are also sequentially activated numerous times. Network synchronization and sequential correlations are blocked by glutamatergic antagonists, even though spontaneous firing persists in many "autonomously active" neurons. This autonomous activity is periodic and depends on hyperpolarization-activated cationic (H) and persistent sodium (Na(p)) currents. We conclude that the isolated neocortical microcircuit generates spontaneous activity, mediated by a combination of intrinsic and circuit mechanisms, and that this activity can be temporally precise.  相似文献   

3.
4.
5.
6.
7.
8.
Neocortical theta-band oscillatory activity is associated with cognitive tasks involving learning and memory. This oscillatory activity is proposed to originate from the synchronization of interconnected layer V intrinsic bursting (IB) neurons by recurrent excitation. To test this hypothesis, a sparsely connected spiking circuit model based on empirical data was simulated using Hodgkin-Huxley-type bursting neurons and use-dependent depressing synaptic connections. In response to a heterogeneous tonic current stimulus, the model generated coherent and robust oscillatory activity throughout the theta-band (4-12 Hz). These oscillations were not, however, self-sustaining without a driving current, and not dependent on N-methyl-D-aspartate receptor synaptic currents. At realistic connection strengths, synaptic depression was necessary to avoid instability and expanded the basin of attraction for theta oscillations by controlling the gain of recurrent excitation. These results support the hypothesis that IB neuron networks can generate robust and coherent theta-band oscillations in neocortex.  相似文献   

9.
Interaction between the background activity of adjoining neurons was investigated using simultaneous recording in surviving slices from the guinea pig sensory motor cortex by means of cross-correlation analysis. A numerical connection was found between the timing of successive discharges in sixteen of the twenty six neuronal pairs investigated. Significant discrepancies were observed in correlation tables, mainly in the range of time shifts of ±100 msec from zero point. These emerged as symmetrical or asymmetrical peaks of up to 150 msec in duration and negative shifts measuring up to 200 msec. More complex positive-negative cross-correlation patterns were also encountered. These findings may be compared with those obtained in the cortex of the intact brain. The subject of the contribution made by intrinsic cortical neuronal interaction and that of external afferents to firing correlation is discussed.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino, Moscow. Translated from Neirofiziologiya, Vol. 23, No. 4, pp. 392–399, July–August, 1991.  相似文献   

10.
11.
Few synaptic transmitters are known to exist that are not represented in some region or another, or at some layer or other, in the cerebral cortex of mammalian brain. The more difficult job than mere identification of which substances are present, is that of the assignment of particular functional role(s) of such substances, and as well, of determining upon exactly which element(s) of the known synaptic circuitry of neocortex, such transmitters operate. Current wisdom subscribes to the view that the excitatory amino acids, most likely L-glutamate, and L-aspartate but perhaps also L-cysteate, L-homocysteate, L-cysteine sulfinate or even (although much less likely) the endogenous dipeptide substance, N-acetyl-L-aspartyl-L-glutamate, are the major excitatory synaptic transmitters of intracortical (associational) fibres, of corticofugal projections, and, as this article will attest, of thalamocortical inputs, as well. What particular limits, or restrictions, are imposed upon these generalizations, such as whether the data pertain only to primary sensory areas or follow some other yet to be determined rule, remains to be discovered in future experiments. This paper first presents an overview of the advances in understanding that have come about during the past few decades concerning the synaptic roles of amino acid transmitters. Next, an experimental section presents new evidence based on release studies and the microiontophoretic approach, which supports the view that the amino acids, glutamate and aspartate, interact with specific, pharmacologically identified subtypes of receptors in neocortex as transmitters of synaptic excitation released from thalamic afferent terminals.  相似文献   

12.
This paper reports on a simulation of propagation for anisotropic two-dimensional cardiac tissue. The tissue structure assumed was that of a Hodgin-Huxley membrane separating inside and outside anisotropic media, obeying Ohm's law in each case. Membrane current was found by an integral expression involving partial spatial derivatives of Vm weighted by a function of distance. Numerical solutions for transmembrane voltage as a function of time following excitation at a single central site were computed using an algorithm that examined only the portion of the tissue undergoing excitation at each moment; thereby, the number of calculations required was reduced to a large but achievable number. Results are shown for several combinations of the four conductivity values: With isotropic tissue, excitation spread in circles, as expected. With tissue having nominally normal ventricular conductivities, excitation spread in patterns close to ellipses. With reciprocal conductivities, isochrones approximated a diamond shape, and were in conflict with the theoretical predictions of Muler and Markin; the time constant of the foot of the action potentials, as computed, varied between sites along axes as compared with sites along the diagonals, even though membrane properties were identical everywhere. Velocity of propagation changed for several milliseconds following the stimulus. Patterns that would have been expected from well-known studies in one dimension did not always occur in two dimensions, with the magnitude of the difference varying from nil for isotropic conductivities to quite large for reciprocal conductivities.  相似文献   

13.
A study was made of the synaptic actin ultrastructural localization in the hippocampal slices at long-lasting potentiation of area CA, using myosin subfragment-1 labeling. A specific qualitative ultrastructural sign of the potentiated hippocampal synapses was revealed for the first time - the formation in spines of rodlike bundles of actin filaments resembling the cilia. They penetrate the spine stalks to pass through the spine core towards the postsynaptic densities of active zones. The thinner bridges link the filament bundles with the actin cytoskeleton meshwork, with spine apparatus cisterns and with postsynaptic membranes of the active zones. Besides the increasing density of the presynaptic actin meshwork was shown. The changes in the actin cytoskeleton being taken into consideration, its contractile properties account for some morphofunctional features of the potentiated synapses known before and predict previously unknown ones.  相似文献   

14.
15.
The study of the characteristic statistical properties of neural systems, which was started in a previous paper, is continued here. The initial value problem for the kinetic equations describing the systems is solved in the one-dimensional case under particular conditions. To handle this problem use is made of certain techniques previously introduced by Landau and later improved by Backus and Turski in the context of the study of oscillations in a linearized plasma. The result is used for the discussion of a very simple neural system.  相似文献   

16.
Electrical high frequency stimulation of the globus pallidus internus or the subthalamic nucleus has beneficial motor effects in advanced Parkinson's disease. The mechanisms underlying these clinical results remain, however, unclear. From previous studies it is proposed that the gamma-aminobutyric acid (GABA) system is involved in the effectiveness of electrical high frequency stimulation. In these experiments, human neocortical slices were stimulated electrically (130 Hz) in vitro, and GABA outflow was measured after o-phthaldialdehyde sulphite derivatization using HPLC with electrochemical detection. Our results could demonstrate that high frequency stimulation (HFS) significantly increased basal GABA outflow in the presence of submaximal concentrations of the voltage-gated sodium channel opener veratridine. This effect could be abolished by the GABA antagonists bicuculline or picrotoxin. These results suggest that HFS has an activating effect on GABAergic neuronal terminals in human neocortical slices, depending on sodium and chloride influx. Since GABA plays a role in CNS disorders of basal ganglia, anxiety and epilepsy, its neocortical modulation by HFS may be (patho)physiologically relevant.  相似文献   

17.
The normal excitation and conduction in the heart are maintained by the coordination between the dynamics of ionic conductance of each cell and the electrical coupling between cells. To examine functional roles of these two factors, we proposed a spatially-discrete model of conduction of excitation in which the individual cells were assumed isopotential. This approximation was reasoned by comparing the apparent space constant with the measured junctional resistance between myocardial cells. We used the four reconstruction models previously reported for five kinds of myocardial cells. Coupling coefficients between adjacent cells were determined quantitatively from the apparent space constants. We first investigated to what extent the pacemaker activity of the sinoatrial node depends on the number and the coupling coefficient of its cells, by using a one-dimensional model system composed of the sinoatrial node cells and the atrial cells. Extensive computer simulation revealed the following two conditions for the pacemaker activity of the sinoatrial node. The number of the sinoatrial node cells and their coupling coefficients must be large enough to provide the atrium with the sufficient electric current flow. The number of the sinoatrial node cells must be large so that the period of the compound system is close to the intrinsic period of the sinoatrial node cell. In this simulation the same sinoatrial node cells produced action potentials of different shapes depending on where they were located in the sinoatrial node. Therefore it seems premature to classify the myocardial cells only from their waveforms obtained by electrical recordings in the compound tissue. Second, we investigated the very slow conduction in the atrioventricular node compared to, for example, the ventricle. This was assumed to be due to the inherent property of the membrane dynamics of the atrioventricular node cell, or to the small value of the coupling coefficient (weak intercellular coupling), or to the electrical load imposed on the atrioventricular node by the Purkinje fibers, because the relatively small atrioventricular node must provide the Purkinje fibers with sufficient electric current flow. Relative contributions of these three factors to the slow conduction were evaluated using the model system composed of only the atrioventricular cells or that composed of the atrioventricular and Purkinje cells. We found that the weak coupling has the strongest effect. In the model system composed of the atrioventricular cells, the propagation failure was not observed even for very small values of the coupling coefficient.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
《Journal of Physiology》1998,92(3-4):329-335
To explore the correlations between short-term neurophysiological events initiated by over-activation of acetylcholine receptors, and long-lasting changes in brain function, we combined electrophysiology and PCR-based measurements in hippocampal slices or live mice subjected to stress or drug-induced cholinergic activation. Our findings reveal a common cascade of neuronal events resulting in delayed suppression of cholinergic transmission.  相似文献   

19.
20.
In research on -aminobutyric acid (GABA) used at different concentrations on the amplitude of EPSP within populations (PEPSP), as recorded from dentrites in isolated hippocampal slices, GABA induced a dose-dependent reversible reduction in PEPSP amplitude with no noticeable signs of desensitization. Highest sensitivity to GABA was shown by PEPSP in hippocampal zone CA1 (threshold concentration: 3×10–5–2×10–4 M; (concentration at which the effect equal to 1/2 of maximum occurs) IC50: 5×10–4–1×10–3 M). The effects of GABA on PEPSP were not blocked by bicuculline, picrotoxin, or penicillin. Action of GABA on dendritic antidromic population spike (DAPS — postynaptic effects) were slightly diminished by these blockers. Baclofen inhibited PEPSP more powerfully than GABA (threshold concentration: 1×10–6 M: IC50: 3×10–6 M), although it only produced a minor reduction in DAPS amplitude even at high concentrations. It is concluded that the inhibitory effect of GABA on PEPSP in hippocampal zone CA1 may be put down mainly to its presynaptic action mediated by GABAB receptors on axonal terminals of Schaffer collaterals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 5, pp. 627–633, September–October, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号