首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The conserved Nup107-160 complex is critical for nuclear pore complex assembly   总被引:21,自引:0,他引:21  
Nuclear pore complexes (NPCs) are large multiprotein assemblies that allow traffic between the cytoplasm and the nucleus. During mitosis in higher eukaryotes, the Nuclear Envelope (NE) breaks down and NPCs disassemble. How NPCs reassemble and incorporate into the NE upon mitotic exit is poorly understood. We demonstrate a function for the conserved Nup107-160 complex in this process. Partial in vivo depletion of Nup133 or Nup107 via RNAi in HeLa cells resulted in reduced levels of multiple nucleoporins and decreased NPC density in the NE. Immunodepletion of the entire Nup107-160 complex from in vitro nuclear assembly reactions produced nuclei with a continuous NE but no NPCs. This phenotype was reversible only if Nup107-160 complex was readded before closed NE formation. Depletion also prevented association of FG-repeat nucleoporins with chromatin. We propose a stepwise model in which postmitotic NPC assembly initiates on chromatin via early recruitment of the Nup107-160 complex.  相似文献   

2.
Nuclear pore complexes (NPCs) form channels across the nuclear envelope and provide the sole sites of molecular exchange between the cytoplasm and nucleoplasm. The NPC is a target of a number of post-translational modifications, including phosphorylation, yet the functions of these modifications are ill defined. Here, we have investigated the mitotic specific phosphorylation of a yeast nucleoporin Nup53p. Two kinases were identified that phosphorylate Nup53p: the mitotic kinase Cdk1p/Cdc2p/Cdc28p and the casein kinase Hrr25p. Hrr25p was identified by screening 119 yeast kinases for their ability to phosphorylate Nup53p in vitro. Conditional alleles of Hrr25p support the conclusion that Hrr25p phosphorylates Nup53p in vivo. We further demonstrated using solution binding and affinity purification assays, that Hrr25p directly binds Nup53p in an interaction that is destabilized by the phosphorylation of Nup53p. Consistent with this observation, we observed that Hrr25p moves between distinct locations in the cell during the cell cycle including the nucleus, the cortex of the emerging bud and the spindle pole bodies. Cdk1p also contributes to Nup53p phosphorylation as specific inhibition of Cdk1p or mutation of Cdk1p consensus sites partially blocked its phosphorylation. The ability of nup53 alleles containing Cdk1p site mutations to complement synthetic defects of nup53 Delta nup170 Delta strains is linked to a function for Nup53p in the spindle assembly checkpoint.  相似文献   

3.
Nuclear pore complexes (NPCs) provide the only sites for macromolecular transport between nucleus and cytoplasm. The nucleoporin p62, a component of higher eukaryotic NPCs, is located at the central gated channel and involved in nuclear trafficking of various cargos. p62 is organized into an N-terminal segment that contains FXFG repeats and binds the soluble transport factor NTF2, whereas the C-terminal portion associates with other nucleoporins and importin-beta1. We have now identified new components that interact specifically with the p62 N-terminal domain. Using the p62 N-terminal segment as bait, we affinity-purified nucleoporins Nup358, Nup214 and Nup153 from crude cell extracts. In ligand binding assays, the N-terminal p62 segment associated with Nup358 and p62, suggesting their direct binding to the p62 N-terminal portion. Furthermore, p62 was isolated in complex with Nup358, Nup214 and Nup153 from growing HeLa cells, indicating that the interactions Nup358/p62, Nup214/p62 and p62/Nup153 also occur in vivo. The formation of Nup358/p62 and p62/Nup153 complexes was restricted to interphase cells, whereas Nup214/p62 binding was detected in interphase as well as during mitosis. Our results support a model of complex interactions between FXFG containing nucleoporins, and we propose that some of these interactions may contribute to the movement of cargo across the NPC.  相似文献   

4.
In a screen for mutants defective in nucleocytoplasmic export of mRNA, we have identified a new component of the Saccharomyces cerevisiae nuclear pore complex (NPC). The RAT9/NUP85 (ribonucleic acid trafficking) gene encodes an 84.9-kDa protein that we have localized to NPCs by tagging the RAT9/NUP85 gene with the in vivo molecular marker Green Fluorescent Protein. In cells containing either the rat9-1 allele or a complete deletion of the RAT9/NUP85 gene, poly(A)+ RNA accumulates rapidly in nuclei after a shift from 23 degrees C to 37 degrees C. Under these same conditions, rapid fragmentation of the nucleolus was also observed. At the permissive growth temperature in rat9-1 or RAT9 deletion strains, the nuclear envelope (NE) becomes detached from the main body of the nucleus, forming long thin double sheets of NE. NPCs within these sheets are clustered and some appear to be locked together between opposing sheets of NE such that their nucleoplasmic faces are in contact. The Rat9/Nup85 protein could not be detected in cells carrying a mutation of RAT2/NUP120, suggesting that Rat9p/Nup85p cannot be assembled into NPCs in the absence of Rat2p/Nup120p. In contrast,Rat9/ Nup85 protein was readily incorporated into NPCs in strains carrying mutant alleles of other nucleoporin genes. The possible role of Rat9p/Nup85p in NE integrity and the loss of nucleoporins when another nucleoporin is mutant or absent are discussed.  相似文献   

5.
Chromatin boundaries in budding yeast: the nuclear pore connection   总被引:27,自引:0,他引:27  
Ishii K  Arib G  Lin C  Van Houwe G  Laemmli UK 《Cell》2002,109(5):551-562
Chromatin boundary activities (BAs) were identified in Saccharomyces cerevisiae by genetic screening. Such BAs bound to sites flanking a reporter gene establish a nonsilenced domain within the silent mating-type locus HML. Interestingly, various proteins involved in nuclear-cytoplasmic traffic, such as exportins Cse1p, Mex67p, and Los1p, exhibit a robust BA. Genetic studies, immunolocalization, live imaging, and chromatin immunoprecipitation experiments show that these transport proteins block spreading of heterochromatin by physical tethering of the HML locus to the Nup2p receptor of the nuclear pore complex. Genetic deletion of NUP2 abolishes the BA of all transport proteins, while direct targeting of Nup2p to the bracketing DNA elements restores activity. The data demonstrate that physical tethering of genomic loci to the NPC can dramatically alter their epigenetic activity.  相似文献   

6.
The mechanisms that govern the assembly of nuclear pore complexes (NPCs) remain largely unknown. Here, we have established a role for karyopherins in this process. We show that the yeast karyopherin Kap121p functions in the targeting and assembly of the nucleoporin Nup53p into NPCs by recognizing a nuclear localization signal (NLS) in Nup53p. This karyopherin-mediated function can also be performed by the Kap95p-Kap60p complex if the Kap121p-binding domain of Nup53p is replaced by a classical NLS, suggesting a more general role for karyopherins in NPC assembly. At the NPC, neighboring nucleoporins bind to two regions in Nup53p. One nucleoporin, Nup170p, associates with a region of Nup53p that overlaps with the Kap121p binding site and we show that they compete for binding to Nup53p. We propose that once targeted to the NPC, dissociation of the Kap121p-Nup53p complex is driven by the interaction of Nup53p with Nup170p. At the NPC, Nup53p exists in two separate complexes, one of which is capable of interacting with Kap121p and another that is bound to Nup170p. We propose that fluctuations between these two states drive the binding and release of Kap121p from Nup53p, thus facilitating Kap121p's movement through the NPC.  相似文献   

7.
We have established that two homologous nucleoporins, Nup170p and Nup157p, play an essential role in the formation of nuclear pore complexes (NPCs) in Saccharomyces cerevisiae. By regulating their synthesis, we showed that the loss of these nucleoporins triggers a decrease in NPCs caused by a halt in new NPC assembly. Preexisting NPCs are ultimately lost by dilution as cells grow, causing the inhibition of nuclear transport and the loss of viability. Significantly, the loss of Nup170p/Nup157p had distinct effects on the assembly of different architectural components of the NPC. Nucleoporins (nups) positioned on the cytoplasmic face of the NPC rapidly accumulated in cytoplasmic foci. These nup complexes could be recruited into new NPCs after reinitiation of Nup170p synthesis, and may represent a physiological intermediate. Loss of Nup170p/Nup157p also caused core and nucleoplasmically positioned nups to accumulate in NPC-like structures adjacent to the inner nuclear membrane, which suggests that these nucleoporins are required for formation of the pore membrane and the incorporation of cytoplasmic nups into forming NPCs.  相似文献   

8.
Chromatin and nuclear pore complexes (NPCs) undergo dramatic changes during mitosis, which in vertebrates and Aspergillus nidulans involves movement of Nup2 from NPCs to the chromatin region to fulfill unknown functions. This transition is shown to require the Cdk1 mitotic kinase and be promoted prematurely by ectopic expression of the NIMA kinase. Nup2 localizes with a copurifying partner termed NupA, a highly divergent yet essential NPC protein. NupA and Nup2 locate throughout the chromatin region during prophase but during anaphase move to surround segregating DNA. NupA function is shown to involve targeting Nup2 to its interphase and mitotic locations. Deletion of either Nup2 or NupA causes identical mitotic defects that initiate a spindle assembly checkpoint (SAC)–dependent mitotic delay and also cause defects in karyokinesis. These mitotic problems are not caused by overall defects in mitotic NPC disassembly–reassembly or general nuclear import. However, without Nup2 or NupA, although the SAC protein Mad1 locates to its mitotic locations, it fails to locate to NPCs normally in G1 after mitosis. Collectively the study provides new insight into the roles of Nup2 and NupA during mitosis and in a surveillance mechanism that regulates nucleokinesis when mitotic defects occur after SAC fulfillment.  相似文献   

9.
Nup116p and Nup100p are highly related yeast GLFG nucleoporins, but only Nup116p is stoichiometrically bound to Gle2p, a previously identified mRNA export factor. A short Gle2p-binding sequence within Nup116p (GLEBS; residues 110-166) is sufficient and necessary to anchor Gle2p at the nuclear pores, whereas the carboxy-terminal domain of Nup116p mediates its own nuclear pore complex (NPC) association. The GLEBS is evolutionarily conserved and found in rat/Xenopus Nup98 and an uncharacterized Caenorhabditis elegans ORF, but is absent from Nup100p. When the GLEBS is deleted from Nup116p, Gle2p dissociates from the nuclear envelope and clusters of herniated nuclear pores form. When the GLEBS is inserted into Nup100p, Nup100p-GLEBS complements both the thermosensitive and NPC-herniated phenotype of nup116- cells, and Gle2p is retargeted concomitantly to the NPCs. Thus, the in vivo function of Gle2p is strictly coupled to the short GLEBS within Nup116p which links this putative mRNA transport factor to the nuclear pores.  相似文献   

10.
In Vivo Dynamics of Nuclear Pore Complexes in Yeast   总被引:7,自引:1,他引:6       下载免费PDF全文
While much is known about the role of nuclear pore complexes (NPCs) in nucleocytoplasmic transport, the mechanism of NPC assembly into pores formed through the double lipid bilayer of the nuclear envelope is not well defined. To investigate the dynamics of NPCs, we developed a live-cell assay in the yeast Saccharomyces cerevisiae. The nucleoporin Nup49p was fused to the green fluorescent protein (GFP) of Aequorea victoria and expressed in nup49 null haploid yeast cells. When the GFP–Nup49p donor cell was mated with a recipient cell harboring only unlabeled Nup49p, the nuclei fused as a consequence of the normal mating process. By monitoring the distribution of the GFP–Nup49p, we could assess whether NPCs were able to move from the donor section of the nuclear envelope to that of the recipient nucleus. We observed that fluorescent NPCs moved and encircled the entire nucleus within 25 min after fusion. When assays were done in mutant kar1-1 strains, where nuclear fusion does not occur, GFP–Nup49p appearance in the recipient nucleus occurred at a very slow rate, presumably due to new NPC biogenesis or to exchange of GFP– Nup49p into existing recipient NPCs. Interestingly, in a number of existing mutant strains, NPCs are clustered together at permissive growth temperatures. This has been explained with two different hypotheses: by movement of NPCs through the double nuclear membranes with subsequent clustering at a central location; or, alternatively, by assembly of all NPCs at a central location (such as the spindle pole body) with NPCs in mutant cells unable to move away from this point. Using the GFP–Nup49p system with a mutant in the NPCassociated factor Gle2p that exhibits formation of NPC clusters only at 37°C, it was possible to distinguish between these two models for NPC dynamics. GFP– Nup49p-labeled NPCs, assembled at 23°C, moved into clusters when the cells were shifted to growth at 37°C. These results indicate that NPCs can move through the double nuclear membranes and, moreover, can do so to form NPC clusters in mutant strains. Such clusters may result by releasing NPCs from a nuclear tether, or by disappearance of a protein that normally prevents pore aggregation. This system represents a novel approach for identifying regulators of NPC assembly and movement in the future.  相似文献   

11.
Nuclear pore complexes (NPCs) span the nuclear envelope and mediate communication between the nucleus and the cytoplasm. To obtain insight into the structure and function of NPCs of multicellular organisms, we have initiated an extensive analysis of Caenorhabditis elegans nucleoporins. Of 20 assigned C. elegans nucleoporin genes, 17 were found to be essential for embryonic development either alone or in combination. In several cases, depletion of nucleoporins by RNAi caused severe defects in nuclear appearance. More specifically, the C. elegans homologs of vertebrate Nup93 and Nup205 were each found to be required for normal NPC distribution in the nuclear envelope in vivo. Depletion of Nup93 or Nup205 caused a failure in nuclear exclusion of nonnuclear macromolecules of approximately 70 kDa without preventing active nuclear protein import or the assembly of the nuclear envelope. The defects in NPC exclusion were accompanied by abnormal chromatin condensation and early embryonic arrest. Thus, the contribution to NPC structure of Nup93 and Nup205 is essential for establishment of normal NPC function and for cell viability.  相似文献   

12.
Nuclear pore complexes (NPCs) are gateways for transport between the nucleus and cytoplasm of eukaryotic cells and play crucial roles in regulation of gene expression. NPCs are composed of multiple copies of ∼ 30 different nucleoporins (nups) that display both ubiquitous and cell type specific functions during development. Vertebrate Nup35 (also known as Nup53) was previously described to interact with Nup93, Nup155 and Nup205 and to be required for nuclear envelope (NE) assembly in vitro. Here, we report the first in vivo characterization of a Nup35 mutation, npp-19(tm2886), and its temperature-dependent effects on Caenorhabditis elegans embryogenesis. At restrictive temperature, npp-19(tm2886) embryos exhibit chromosome missegregation, nuclear morphology defects and die around mid-gastrulation. Depletion of Nup35/NPP-19 inhibits NE localization of Nup155/NPP-8, NPC assembly and nuclear lamina formation. Consequently, nuclear envelope function, including nucleo-cytoplasmic transport, is impaired. In contrast, recruitment of Nup107/NPP-5, LEM-2 and nuclear membranes to the chromatin surface is Nup35/NPP-19-independent, suggesting an uncoupling of nuclear membrane targeting and NPC assembly in the absence of Nup35/NPP-19. We propose that Nup35/NPP-19 has an evolutionary conserved role in NE formation and function, and that this role is particularly critical during the rapid cell divisions of early embryogenesis.  相似文献   

13.
Little is known about the structure of the individual nucleoporins that form eukaryotic nuclear pore complexes (NPCs). We report here in vitro physical and structural characterizations of a full-length nucleoporin, the Saccharomyces cerevisiae protein Nup2p. Analyses of the Nup2p structure by far-UV circular dichroism (CD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, protease sensitivity, gel filtration, and sedimentation velocity experiments indicate that Nup2p is a "natively unfolded protein," belonging to a class of proteins that exhibit little secondary structure, high flexibility, and low compactness. Nup2p possesses a very large Stokes radius (79 A) in gel filtration columns, sediments slowly in sucrose gradients as a 2.9 S particle, and is highly sensitive to proteolytic digestion by proteinase K; these characteristics suggest a structure of low compactness and high flexibility. Spectral analyses (CD and FTIR spectroscopy) provide additional evidence that Nup2p contains extensive regions of structural disorder with comparatively small contributions of ordered secondary structure. We address the possible significance of natively unfolded nucleoporins in the mechanics of nucleocytoplasmic trafficking across NPCs.  相似文献   

14.
Miao M  Ryan KJ  Wente SR 《Genetics》2006,172(3):1441-1457
Here we have examined the function of Pom34p, a novel membrane protein in Saccharomyces cerevisiae, localized to nuclear pore complexes (NPCs). Membrane topology analysis revealed that Pom34p is a double-pass transmembrane protein with both the amino (N) and carboxy (C) termini positioned on the cytosolic/pore face. The network of genetic interactions between POM34 and genes encoding other nucleoporins was established and showed specific links between Pom34p function and Nup170p, Nup188p, Nup59p, Gle2p, Nup159p, and Nup82p. The transmembrane domains of Pom34p in addition to either the N- or C-terminal region were necessary for its function in different double mutants. We further characterized the pom34deltaN nup188delta mutant and found it to be perturbed in both NPC structure and function. Mislocalization of a subset of nucleoporins harboring phenylalanine-glycine repeats was observed, and nuclear import capacity for the Kap104p and Kap121p pathways was inhibited. In contrast, the pom34delta pom152delta double mutant was viable at all temperatures and showed no such defects. Interestingly, POM152 overexpression suppressed the synthetic lethality of pom34delta nup170delta and pom34delta nup59delta mutants. We speculate that multiple integral membrane proteins, either within the nuclear pore domain or in the nuclear envelope, execute coordinated roles in NPC structure and function.  相似文献   

15.
Nuclear pore complexes (NPCs) play an essential role in RNA export. Nucleoporins required for mRNA export in Saccharomyces cerevisiae are found in the Nup84p and Nup82p subcomplexes of the NPC. The Nup82p subcomplex contains Nup82p, Rat7p/Nup159p, Nsp1p, Gle1p/Rss1p, and Rip1p/Nup42p and is found only on the cytoplasmic face of NPCs. Both Rat7p and Gle1p contain binding sites for Rat8p/Dbp5p, an essential DEAD box protein and putative RNA helicase. Rip1p interacts directly with Gle1p and is the only protein known to be essential for mRNA export after heat shock but not under normal growth conditions. We report that in cells lacking Rip1p, both Gle1p and Rat8p dissociate from NPCs following heat shock at 42 degrees C. Rat8p but not Gle1p was retained at NPCs if rip1Delta cells were first shifted to 37 degrees C and then to 42 degrees C, and this was correlated with preserving mRNA export in heat-shocked rip1Delta cells. Export following ethanol shock was less dependent on the presence of Rip1p. Exposure to 10% ethanol led to dissociation of Rat8p from NPCs in both wild-type and rip1Delta cells. Following this treatment, Rat8p was primarily nuclear in wild-type cells but primarily cytoplasmic in rip1Delta cells. We also determined that efficient export of heat shock mRNA after heat shock depends upon a novel 6-amino-acid element within Rat8p. This motif is not required under normal growth conditions or following ethanol shock. These studies suggest that the molecular mechanism responsible for the defect in export of heat shock mRNAs in heat-shocked rip1Delta cells is dissociation of Rat8p from NPCs. These studies also suggest that both nuclear pores and Rat8p have features not required for mRNA export in growing cells but which enhance the ability of mRNAs to be exported following heat shock.  相似文献   

16.
Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in the nuclear envelope (NE), through which exchange of molecules between the nucleus and cytosol occurs. Biogenesis of NPCs is complex and poorly understood. In particular, almost nothing is known about how NPCs are anchored in the NE. Here, we characterize vertebrate NDC1--a transmembrane nucleoporin conserved between yeast and metazoans. We show by RNA interference (RNAi) and biochemical depletion that NDC1 plays an important role in NPC and NE assembly in vivo and in vitro. RNAi experiments suggest a functional link between NDC1 and the soluble nucleoporins Nup93, Nup53, and Nup205. Importantly, NDC1 interacts with Nup53 in vitro. This suggests that NDC1 function involves forming a link between the NE membrane and soluble nucleoporins, thereby anchoring the NPC in the membrane.  相似文献   

17.
《The Journal of cell biology》1996,133(6):1153-1162
We have isolated a major protein constituent from a highly enriched fraction of yeast nuclear pore complexes (NPCs). The gene encoding this protein, Nup188p, was cloned, sequenced, and found to be nonessential upon deletion. Nup188p cofractionates with yeast NPCs and gives an immunofluorescent staining pattern typical of nucleoporins. Using immunoelectron microscopy, Nup188p was shown to localize to both the cytoplasmic and nucleoplasmic faces of the NPC core. There, Nup188p interacts with an integral protein of the pore membrane domain, Pom152p, and another abundant nucleoporin, Nic96p. The effects of various mutations in the NUP188 gene on the structure of the nuclear envelope and the function of the NPC were examined. While null mutants of NUP188 appear normal, other mutants allelic to NUP188 exhibit a dominant effect leading to the formation of NPC-associated nuclear envelope herniations and growth inhibition at 37 degrees C. In addition, depletion of the interacting protein Pom152p in cells lacking Nup188p resulted in severe deformations of the nuclear envelope. We suggest that Nup188p is one of a group of proteins that form the octagonal core structure of the NPC and thus functions in the structural organization of the NPC and nuclear envelope.  相似文献   

18.
19.
The small GTPase Ran/Gsp1p plays an essential role in nuclear trafficking of macromolecules, as Ran/Gsp1p regulates many transport processes across the nuclear pore complex (NPC). To determine the role of nucleoporins in the generation of the nucleocytoplasmic Gsp1p concentration gradient, mutations in various nucleoporin genes were analyzed in the yeast Saccharomyces cerevisiae. We show that the nucleoporins Nup133p, Rat2p/Nup120p, Nup85p, Nic96p, and the enzyme acetyl-CoA carboxylase (MTR7) control the distribution and cellular concentration of Gsp1p. At the restrictive temperature the reporter protein GFP-Gsp1p, which is too large to diffuse across the nuclear envelope, fails to concentrate in nuclei of nup133delta, rat2-1, nup85delta, nic96deltaC, and mtr7-1 cells, demonstrating that GFP-Gsp1p nuclear import is deficient. In addition, the concentration of Gsp1p is severely reduced in mutants nup133Delta and mtr7-1 under these conditions. We have now identified the molecular mechanisms that contribute to the dissipation of the Gsp1p concentration gradient in these mutants. Loss of the Gsp1p gradient in nup133delta and rat2-1 can be explained by reduced binding of the Gsp1p nuclear carrier Ntf2p to NPCs. Likewise, nup85delta cells that mislocalize GFP-Gsp1p at the permissive as well as non-permissive temperature have a diminished association of Ntf2p-GFP with nuclear envelopes under both conditions. Moreover, under restrictive conditions Prp20p, the guanine nucleotide exchange factor for Gsp1p, mislocalizes to the cytoplasm in nup85delta, nic96deltaC, and mtr7-1 cells, thereby contributing to a collapse of the Gsp1p gradient. Taken together, components of the NPC subcomplex containing Rat2p/Nup120p, Nup133p, and Nup85p, in addition to proteins Nic96p and Mtr7p, are shown to be crucial for the formation of a nucleocytoplasmic Gsp1p gradient.  相似文献   

20.
Nuclear pore complexes (NPCs) are multiprotein channels that bridge the nucleus with the cytoplasm and regulate all nucleo‐cytoplasmic traffic. NPCs are built by the repetition of ~30 different proteins known as nucleoporins (Nups). Accumulating evidence has revealed a diversity in NPC composition that is critical for cell‐specific functionality and fate determination. A new report by Hazawa et al 1 now identifies the central transport channel nucleoporin Nup62 as a novel regulator of cell proliferation and differentiation in squamous cell carcinoma (SCC), via modulation of p63 nucleo‐cytoplasmic transport. These findings provide further evidence on how alterations in NPC composition might be utilized to determine cell fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号