首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Melatonin is a potent endogenous free radical scavenger, actions that are independent of its many receptor-mediated effects. In the last several years, hundreds of publications have confirmed that melatonin is a broad-spectrum antioxidant. Melatonin has been reported to scavenge hydrogen peroxide (H(2)O(2)), hydroxyl radical (HO(.)), nitric oxide (NO(.)), peroxynitrite anion (ONOO(-)), hypochlorous acid (HOCl), singlet oxygen ((1)O(2)), superoxide anion (O(2)(-).) and peroxyl radical (LOO(.)), although the validity of its ability to scavenge O(2)(-). and LOO(.) is debatable. Regardless of the radicals scavenged, melatonin prevents oxidative damage at the level of cells, tissues, organs and organisms. The antioxidative mechanisms of melatonin seem different from classical antioxidants such as vitamin C, vitamin E and glutathione. As electron donors, classical antioxidants undergo redox cycling; thus, they have the potential to promote oxidation as well as prevent it. Melatonin, as an electron-rich molecule, may interact with free radicals via an additive reaction to form several stable end-products which are excreted in the urine. Melatonin does not undergo redox cycling and, thus, does not promote oxidation as shown under a variety of experimental conditions. From this point of view, melatonin can be considered a suicidal or terminal antioxidant which distinguishes it from the opportunistic antioxidants. Interestingly, the ability of melatonin to scavenge free radicals is not in a ratio of mole to mole. Indeed, one melatonin molecule scavenges two HO. Also, its secondary and tertiary metabolites, for example, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, N-acetyl-5-methoxykynuramine and 6-hydroxymelatonin, which are believed to be generated when melatonin interacts with free radicals, are also regarded as effective free radical scavengers. The continuous free radical scavenging potential of the original molecule (melatonin) and its metabolites may be defined as a scavenging cascade reaction. Melatonin also synergizes with vitamin C, vitamin E and glutathione in the scavenging of free radicals. Melatonin has been detected in vegetables, fruits and a variety of herbs. In some plants, especially in flowers and seeds (the reproductive organs which are most vulnerable to oxidative insults), melatonin concentrations are several orders of magnitude higher than measured in the blood of vertebrates. Melatonin in plants not only provides an alternative exogenous source of melatonin for herbivores but also suggests that melatonin may be an important antioxidant in plants which protects them from a hostile environment that includes extreme heat, cold and pollution, all of which generate free radicals.  相似文献   

2.
Melatonin in Chinese medicinal herbs   总被引:13,自引:0,他引:13  
Chen G  Huo Y  Tan DX  Liang Z  Zhang W  Zhang Y 《Life sciences》2003,73(1):19-26
Melatonin is a highly conserved molecule that not only exists in animals, but also is present in bacteria, unicellular organisms and in plants. Since melatonin is an antioxidant, in plants melatonin was speculated to protect them from intrinsic and environmental oxidative stress. More importantly, melatonin in edible plants inevitably enters animals and human through feed and food. In this study, more than 100 Chinese medicinal herbs were analyzed using the methods of solid phase extraction and HPLC-FD on-line with MS to determine whether melatonin is present in these commonly used herbs. Melatonin was detected in majority of these plants. Sixty-four of them contain melatonin in excess of 10 ng per gram dry mass. Melatonin levels in several herbs are in excess of 1000 ng/g. It is well known that normal average physiological plasma levels of melatonin are only 10-60 pg/mL. These high level-melatonin containing plants are traditionally used to treat diseases which presumably involve free radical damage. The current study provides new information concerning one potentially effective constituent present in a large number of medicinal herbs. The results suggest that these herbs should be reevaluated in reference to their nutritional and medicinal value.  相似文献   

3.
Melatonin (N-acetyl-5-methoxytryptamine) has a great potential for plant biostimulation. Its role in plant physiology is intensively explored, and its important function in plant stress defence frequently underlined. Melatonin is particularly effective when applied as an additional factor of seed priming. In the presented research, hydroconditioning was chosen experimentally as optimal for maize (Zea mays L.) seeds. The following seed variants were compared: controlled non-treated, hydroprimed with water and hydroprimed with melatonin solutions 50 and 500 μM. To identify modifications in proteome of maize seeds caused by the applied hydroconditioning techniques, protein extracts of germinated seed embryos (24 h, 25 °C) were separated by 2D-PAGE. Next, obtained maps of proteomes were compared (statistically and graphically) using PDQuest software, and characteristic spots of proteins were analysed qualitatively by mass-spectrometric techniques and identified in the Mascot protein databases. Research helped to identify hydropriming-associated proteins, and for the first time those which were expressed only in the presence of melatonin. Study confirmed that suitably selected pre-sowing treatment with melatonin, by embryo proteome modification, effectively prepares plants to adverse environmental conditions. In melatonin treated seeds during the initial state of embryos growth, even under optimal conditions, additional antioxidative, detoxifying, anti-stresses proteins were synthesized. Moreover, the supply of energy from seed storage substances was pretty intensified. The presented results partially explain how melatonin acts in plant stress defence, and why plants with higher melatonin content have exhibited increased capacity for stress tolerance.  相似文献   

4.
Drought stress is a serious threat to the germination of plant seeds and the growth of seedlings. Melatonin has been proven to play an important role in alleviating plant stress. However, its effect on seed germination under drought conditions is still poorly understood. Therefore, we studied the effects of melatonin on rice seed germination and physiological characteristics under drought stress. Rice seeds were treated with different concentrations of melatonin (i.e., 0, 20, 100, and 500 μM) and drought stress was simulated with 5% polyethylene glycol 6000 (PEG6000). The results showed that 100 μM melatonin can effectively improve the germination potential, rate and index; the vigor index of rice seeds; and the length of the shoot and root. In addition, that treatment also increased the activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and reduced the content of malondialdehyde (MDA). The grey relational grade between the shoot MDA content and the melatonin seed-soaking treatment was the highest, which could be useful for evaluating the effect of melatonin on drought tolerance. Two-way analysis of variance showed that the effect of single melatonin treatment on rice seeds was more significant than that of single drought stress and interaction treatment of drought and melatonin (p < 0.05). The subordinate function results showed that 100 μM melatonin significantly improved the germination and physiological indexes of rice seeds and effectively alleviated the adverse effects of drought stress on rice seedlings. The results helped to improve the understanding of the morphological and physiological involvement of melatonin in promoting seed germination and seedling development under drought stress.  相似文献   

5.
The Physiological Function of Melatonin in Plants   总被引:1,自引:0,他引:1  
Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, was discovered in plants in 1995 but very little research into it has been carried out since. It is present in different parts of all the plant species studied, including leaves, stems, roots, fruits and seeds. This brief review will attempt to provide an overview of melatonin (its discovery, presence and functions in different organisms, biosynthetic route, etc.) and to compile a practically complete bibliography on this compound in plants. The common biosynthetic pathways shared by the auxin, indole-3-acetic, and melatonin suggest a possible coordinated regulation in plants. More specifically, our knowledge to date of the role of melatonin in the vegetative and reproductive physiology of plants is presented in detail. The most interesting aspects for future physiological studies are presented.Key Words: antioxidant, auxin, flowering, growth, IAA, melatonin, plant hormone, reproductive development, rooting, vegetative developmentMelatonin (N-acetyl-5-methoxytryptamine), an “old friend” and well known as an animal hormone but “new” to plant biology is arousing great interest due to its broad distribution in the biological kingdom and the recent data on its possible physiological role in plants. Many studies on melatonin, as a phytochemical compound with potentially interesting health-related properties, have recently appeared, but no more than 15–20 papers with a plant physiological focus have been published since 1995. Besides mentioning the most interesting data on melatonin related with plants, this review will hopefully trigger more studies into this molecule to deepen our understanding of the different physiological roles that it might play in plants. We shall briefly look at the well-known function of melatonin in vertebrates, its discovery in plants and other organisms, and its presence in plants as a possible medicinal phytochemical. The joint biosynthetic pathways of melatonin and the auxin indole-3-acetic acid (IAA) will be described. Thus, we reveal the new and emerging field of melatonin studies in plants, the limited physiological data available and its possible role in plants.  相似文献   

6.
7.
Free radicals and other reactive species are involved in normal ovarian physiology. However, they are also highly reactive with complex cellular molecules (proteins, lipids, and DNA) and alter their functions leading to oxidative stress. Oxidative damage may play a prominent role in the development of disorders that considerably influence female fertility. Melatonin, because of its amphiphilic nature that allows for crossing morphophysiological barriers, is an effective antioxidant for protecting macromolecules against oxidative stress caused by reactive species. The balance between reactive oxygen species and antioxidants within the follicle seems to be critical to the function of the oocyte and granulosa cells and evidence has accumulated showing that melatonin is involved in the protection of these cells. Melatonin appears to have varied functions at different stages of follicle development, oocyte maturation, and luteal stage. Melatonin concentration in the growing follicle may be an important factor in avoiding atresia, because melatonin in the follicular fluid reduces apoptosis of critical cells. Melatonin also has protective actions during oocyte maturation reducing intrafollicular oxidative damage. An association between melatonin concentrations in follicular fluid and oocyte quality has been reported; this would allow a preovulatory follicle to fully develop and provide a competent oocyte for fertilization. The functional role of reactive species and the cytoprotective properties of melatonin on the ovary from oxidative damage are summarized in this brief review.  相似文献   

8.
Melatonin mediates many physiological processes in animals and plants. To examine the potential roles of melatonin in salinity tolerance, we investigated the effects of exogenous melatonin on growth and antioxidant system in cucumber under 200 mM NaCl stress conditions. The results showed that the melatonin-treated plants significantly increased growth mass and antioxidant protection. Under salinity stress, the addition of melatonin effectively alleviated the decrease in the net photosynthetic rate, the maximum quantum efficiency of PSII, and the total chlorophyll content. Our data also suggested that melatonin and the resistance of plants exhibited a concentration effect. The application of 50–150 μM melatonin significantly improved the photosynthetic capacity. Additionally, the pretreatment with melatonin reduced the oxidative damage under salinity stress by scavenging directly H2O2 or enhancing activity of antioxidant enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase) and concentrations of antioxidants (ascorbic acid and glutathione). Therefore, the melatonin-treated plants could effectively enhance their salinity tolerance.  相似文献   

9.
植物中褪黑素的研究进展   总被引:5,自引:0,他引:5  
植物褪黑素自20世纪90年代被发现以来,初期的研究多为测定方法,而后褪黑素生理功能的研究成为热点。植物中褪黑素含量的测定方法有放射免疫测定(RIA)、高效液相色谱(HPLC)、气相色谱(GC)、高效液相色谱-质谱(HPLC-MS)和气相色谱-质谱(GC-MS)等,而高效液相色谱与荧光检测器(HPLC-FD)和电化学检测器(HPLC-EC)联用是植物中褪黑素定量研究的较常用方法。褪黑素含量因植物种类、器官不同而异,并以繁殖器官种子和花中较高。褪黑素在植物中具有调节光周期、促进植物种子萌发及生根、提高植物抵御外界环境压力如重金属、紫外辐射、温度变化等功能,而这些生理功能的作用机制、合成位点等尚待进一步研究。该文对国内外近年来有关褪黑素在植物中的检测方法、生物合成途径及生理功能等几个方面的研究进展进行综述,并提出今后的研究方向。  相似文献   

10.
Melatonin is a hormone-like substance that has a variety of beneficial properties as regulator of the circadian rhythm and as anti-inflammatory and anti-cancer agent. The latter activity can be linked with the ability of melatonin to protect DNA against oxidative damage. It may exert such action either by scavenging reactive oxygen species or their primary sources, or by stimulating the repair of oxidative damage in DNA. Since such type of DNA damage is reflected in oxidative base modifications that are primarily repaired by base-excision repair (BER), we tried to investigate in the present work whether melatonin could influence this DNA-repair system. We also investigated the ability of melatonin to inactivate hydrogen peroxide, a potent source of reactive oxygen species. Melatonin at 50 microM and its direct metabolite N(1)-acetyl-N(2)-formyl-5-methoxykynuramine reduced DNA damage induced by hydrogen peroxide at approximately the same ratio. Melatonin stimulated the repair of DNA damage induced by hydrogen peroxide, as assessed by the alkaline comet assay. However, melatonin at 50 microM had no impact on the activity in vitro of three glycosylases playing a pivotal role in BER: Endo III, Fpg and ANPG 80. On the other hand, melatonin chemically inactivated hydrogen peroxide, reducing its potential to damage DNA. And finally, melatonin did not influence the repair of an a-basic (AP) site by cellular extracts, as was evaluated by a functional BER assay in vitro. In conclusion, melatonin can have a protective effect against oxidative DNA damage by chemical inactivation of a DNA-damaging agent as well as by stimulating DNA repair, but key factors in BER, viz. glycosylases and AP-endonucleases, do not seem to be affected by melatonin. Further study with other components of the BER machinery and studies aimed at other DNA-repair systems are needed to clarify the mechanism underlying the stimulation of DNA repair by melatonin.  相似文献   

11.
Melatonin is a ubiquitous molecule and widely distributed in nature, with functional activity occurring in unicellular organisms, plants, fungi and animals. In most vertebrates, including humans, melatonin is synthesized primarily in the pineal gland and is regulated by the environmental light/dark cycle via the suprachiasmatic nucleus. Pinealocytes function as 'neuroendocrine transducers' to secrete melatonin during the dark phase of the light/dark cycle and, consequently, melatonin is often called the 'hormone of darkness'. Melatonin is principally secreted at night and is centrally involved in sleep regulation, as well as in a number of other cyclical bodily activities. Melatonin is exclusively involved in signaling the 'time of day' and 'time of year' (hence considered to help both clock and calendar functions) to all tissues and is thus considered to be the body's chronological pacemaker or 'Zeitgeber'. Synthesis of melatonin also occurs in other areas of the body, including the retina, the gastrointestinal tract, skin, bone marrow and in lymphocytes, from which it may influence other physiological functions through paracrine signaling. Melatonin has also been extracted from the seeds and leaves of a number of plants and its concentration in some of this material is several orders of magnitude higher than its night-time plasma value in humans. Melatonin participates in diverse physiological functions. In addition to its timekeeping functions, melatonin is an effective antioxidant which scavenges free radicals and up-regulates several antioxidant enzymes. It also has a strong antiapoptotic signaling function, an effect which it exerts even during ischemia. Melatonin's cytoprotective properties have practical implications in the treatment of neurodegenerative diseases. Melatonin also has immune-enhancing and oncostatic properties. Its 'chronobiotic' properties have been shown to have value in treating various circadian rhythm sleep disorders, such as jet lag or shift-work sleep disorder. Melatonin acting as an 'internal sleep facilitator' promotes sleep, and melatonin's sleep-facilitating properties have been found to be useful for treating insomnia symptoms in elderly and depressive patients. A recently introduced melatonin analog, agomelatine, is also efficient for the treatment of major depressive disorder and bipolar affective disorder. Melatonin's role as a 'photoperiodic molecule' in seasonal reproduction has been established in photoperiodic species, although its regulatory influence in humans remains under investigation. Taken together, this evidence implicates melatonin in a broad range of effects with a significant regulatory influence over many of the body's physiological functions.  相似文献   

12.
Melatonin stimulates the expansion of etiolated lupin cotyledons   总被引:1,自引:0,他引:1  
Melatonin (N-acetyl-5-methoxytryptamine) is an indoleamine which is structurally related to tryptophan, serotonin and indole-3-acetic acid (IAA), among other important substances. Many studies have clearly demonstrated its presence in different plant organs, including roots, stems, leaves, flowers, fruits and seeds. Since it discovery in plants in 1995, authors have postulated many physiological roles for melatonin, although research into this molecule in plants is still in its infancy. The data presented in this study demonstrate that melatonin stimulates the expansion of etiolated cotyledons of lupin (Lupinus albus L.) to a similar extent to that observed for IAA but less than in the case of kinetin. Endogenous melatonin in imbibed cotyledons has been quantified using a liquid chromatography method with fluorescence detection and capacity of cotyledons to absorb melatonin has been determined. The observed effect of melatonin on lupin cotyledon expansion can be added to the other effects demonstrated by our group such as its role as growth promoter and rooting promotor in adventitious and lateral roots.  相似文献   

13.
褪黑素对玉米幼苗根系发育和抗旱性的影响   总被引:2,自引:0,他引:2  
褪黑素是一种在生物体内广泛存在的吲哚胺类化合物,参与植物的多种生理和生化过程.近年来研究认为褪黑素可以不同程度地增强植物的抗逆性,但对其作用机理仍知之甚少.通过两种褪黑素的施用方法,详细研究了褪黑素对于玉米根系发育和抗旱性的影响.首先,采用水培根灌褪黑素的方法对玉米幼苗的根系和生长状况进行分析,结果表明施加褪黑素显著提...  相似文献   

14.
Bile is an important physiological bodily fluid which functions in the regulation of cholesterol metabolism, promotes the absorption of lipid and fat-soluble vitamins by the gut and serves in the excretion of toxic substances from the liver. Conversely, due to autooxidative processes bile is highly toxic to the hepatocyte and gastrointestinal epithelium. In this investigation, extremely high day time physiological levels of the endogenous antioxidant, melatonin, were measured in the bile of several mammals including rat, guinea pig, rabbit, pig, monkey and humans. Melatonin concentrations in the bile samples ranged from 2,000 to 11,000 pg/ml when measured by radioimmunoassay (RIA). These melatonin levels in bile are 2 to 3 orders of magnitude higher than those in day time serum. The presence of melatonin in bile was confirmed by HPLC with an electrochemical detector. This method, like the RIA, also documented very high levels of melatonin in bile. The presence of high levels of melatonin in bile may be essential to prevent oxidative damage to biliary and small intestinal epithelium induced by bile acids and oxidized cholesterol derivatives.  相似文献   

15.
Prolonged exposure to excessive aluminium (Al) concentrations is involved in the ethiopathology of certain dementias and neurological disorders. Melatonin is a well-known antioxidant that efficiently reduces lipid peroxidation due to oxidative stress. Herein, we investigated in synaptosomal membranes the effect of melatonin in preventing Al promotion of lipid and protein oxidation when the metal was combined with FeCl3 and ascorbic acid. Lipid peroxidation was estimated by quantifying malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations in the membrane suspension and protein carbonyls were measured in the synaptosomes as an index of oxidative damage. Under our experimental conditions, the addition of Al (0.0001–1 mmol/L) enhanced MDA+4-HDA formation in the synaptosomes. In addition, Al (1 mmol/L) raised protein carbonyl contents. Melatonin reduced, in a concentration-dependent manner, lipid and protein oxidation due to Al, FeCl3 and ascorbic acid in the synaptosomal membranes. These results show that melatonin confers protection against Al-induced oxidative damage in synaptosomes and suggest that this indoleamine may be considered as a neuroprotective agent in Al toxicity because of its antioxidant activity.  相似文献   

16.
Impairment of thyroid functions brings about pathological changes in different organs of body. Findings of in vivo and in vitro studies indicate that thyroid hormones have a considerable impact on oxidative stress. Melatonin reduces oxidative damage through its free radical eliminating and direct anti-oxidant effects. The present study was undertaken to determine how a 3-week period of intraperitoneal melatonin administration affected oxidative damage caused in experimental hyperthyroidism in rat. The experimental animals were divided into 3 groups (control, hyperthyroidism, hyperthyroidism+melatonin). Malondialdehyde (MDA) and glutathione (GSH) levels were determined in different tissues. MDA levels in cerebral, liver and cardiac tissues in hyperthyroidism group were significantly higher than those in control and hyperthyroidism+melatonin supplemented groups (p<0.001). The highest GSH levels were observed in the group that was administered melatonin in addition to having hyperthyroidism (p<0.001). These results show that hyperthyroidism increased oxidative damage in cerebral, hepatic and cardiac tissues of rat. Melatonin supplementation may also suppress oxidative damage.  相似文献   

17.
从生物进化看褪黑素的功能意义   总被引:5,自引:0,他引:5  
李经才  王芳  霍艳  刘东春 《生命科学》2000,12(3):130-133
褪黑素在生物发布极为广泛,从低等原核生物到高5等脊椎动物,乃至植物体内均发现褪黑素。在漫长的生物进化过程中,它作为了种古老多效性的分子而保留至今。生物中门类浩繁,形态、功能千差万别,但体内的褪黑素却有相似的作用:(1)传递光暗信号,使生物的各种内源性节律与环境周期保持同步。(2)有铲清除生物体内的自由基。使机体免受氧化损伤。(3)褪黑素与钙调蛋白结合,调节细胞骨架的机能状态,以执行特定的功能、褪黑  相似文献   

18.
Ionizing radiation is classified as a potent carcinogen, and its injury to living cells is, to a large extent, due to oxidative stress. The molecule most often reported to be damaged by ionizing radiation is DNA. Hydroxyl radicals (*OH), considered the most damaging of all free radicals generated in organisms, are often responsible for DNA damage caused by ionizing radiation. Melatonin, N-acetyl-5-methoxytryptamine, is a well-known antioxidant that protects DNA, lipids, and proteins from free-radical damage. The indoleamine manifests its antioxidative properties by stimulating the activities of antioxidant enzymes and scavenging free radicals directly or indirectly. Among known antioxidants, melatonin is a highly effective scavenger of *OH. Melatonin is distributed ubiquitously in organisms and, as far as is known, in all cellular compartments, and it quickly passes through all biological membranes. The protective effects of melatonin against oxidative stress caused by ionizing radiation have been documented in in vitro and in vivo studies in different species and in in vitro experiments that used human tissues, as well as when melatonin was given to humans and then tissues collected and subjected to ionizing radiation. The radioprotective effects of melatonin against cellular damage caused by oxidative stress and its low toxicity make this molecule a potential supplement in the treatment or co-treatment in situations where the effects of ionizing radiation are to be minimized.  相似文献   

19.
Melatonin has been reported to participate in the regulation of a number of important physiological and pathological processes. Melatonin, which is a powerful endogenous antioxidant, may play a role in the prevention of oxidative damage. The aim of this study was to investigate the effect of pretreatment with melatonin (5 mg kg(-1) and 10 mg kg(-1)) on gamma-radiation-induced oxidative damage in plasma and erythrocytes after total-body irradiation with a single dose of 5 Gy. Total-body irradiation resulted in a significant increase in plasma and erythrocyte MDA levels. Melatonin alone increased the levels of SOD and GSH-Px. Erythrocyte and plasma MDA levels in irradiated rats that were pretreated with melatonin (5 or 10 mg kg(-1)) were significantly lower than those in rats that were not pretreated. There was no significant difference between the effects of 5 and 10 mg kg(-1) on plasma MDA activities and CAT activities. However, erythrocyte MDA levels showed a dose-dependent decrease, while GSH-Px activities increased with dose. Our study suggests that melatonin administered prior to irradiation may protect against the damage produced by radiation by the up-regulation of antioxidant enzymes and by scavenging free radicals generated by ionizing radiation.  相似文献   

20.
Iqbal  Reema  Khan  Tariq 《Biotechnology letters》2022,44(8):933-950
Biotechnology Letters - Melatonin is a natural indolamine that regulates many physiological functions in plants. The most prominent role of melatonin in plants has been its ability to work as an...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号