首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
P N Benfey  L Ren    N H Chua 《The EMBO journal》1990,9(6):1677-1684
The cauliflower mosaic virus (CaMV) 35S enhancer is able to confer strong constitutive expression in plants. We have previously defined two domains within this enhancer that can confer different tissue-specific expression patterns throughout development. We show here that the upstream domain (B) has a modular organization. It contains at least five subdomains that are able to confer distinct expression patterns when fused to the downstream domain (A). When fused to a minimal promoter only three of the five subdomains give any expression in the early stages of plant development. Comparison of the expression patterns conferred by the subdomains alone, in combination with the downstream domain or in combination with other subdomains provides evidence for synergistic interactions among cis-elements within the 35S enhancer.  相似文献   

4.
5.
A small but growing number of loci that exhibit covalent histone modifications, such as hyperacetylation, over broad regions of 10 kb or more have been characterized. These hyperacetylated domains occur exclusively at loci containing highly expressed, tissue-specific genes, and the available evidence suggests that they are involved in the activation of these genes. Although to date little is known concerning the formation or function of these domains, rather more is known concerning repressive, heterochromatic domains, and the example provided by heterochromatin may be instructive in considering mechanisms of active domain formation.  相似文献   

6.
7.
8.
Bullous pemphigoid antigen 1 (BPAG1) is a member of the plakin family with cytoskeletal linker properties. Mutations in BPAG1 cause sensory neuron degeneration and skin fragility in mice. We have analyzed the BPAG1 locus in detail and found that it encodes different interaction domains that are combined in tissue-specific manners. These domains include an actin-binding domain (ABD), a plakin domain, a coiled coil (CC) rod domain, two different potential intermediate filament-binding domains (IFBDs), a spectrin repeat (SR)-containing rod domain, and a microtubule-binding domain (MTBD). There are at least three major forms of BPAG1: BPAG1-e (302 kD), BPAG1-a (615 kD), and BPAG1-b (834 kD). BPAG1-e has been described previously and consists of the plakin domain, the CC rod domain, and the first IFBD. It is the primary epidermal BPAG1 isoform, and its absence that is the likely cause of skin fragility in mutant mice. BPAG1-a is the major isoform in the nervous system and a homologue of the microtubule actin cross-linking factor, MACF. BPAG1-a is composed of the ABD, the plakin domain, the SR-containing rod domain, and the MTBD. The absence of BPAG1-a is the likely cause of sensory neurodegeneration in mutant mice. BPAG1-b is highly expressed in muscles, and has extra exons encoding a second IFBD between the plakin and SR-containing rod domains of BPAG1-a.  相似文献   

9.
Syndecan-1 is a cell surface proteoglycan that can organize co-receptors into a multimeric complex to transduce intracellular signals. The syndecan-1 core protein has multiple domains that confer distinct cell- and tissue-specific functions. Indeed, the extracellular, transmembrane, and cytoplasmic domains have all been found to regulate specific cellular processes. Our previous work demonstrated that syndecan-1 controls lung epithelial migration and adhesion. Here, we identified the necessary domains of the syndecan-1 core protein that modulate its function in lung epithelial repair. We found that the syndecan-1 transmembrane domain has a regulatory function in controlling focal adhesion disassembly, which in turn controls cell migration speed. In contrast, the extracellular domain facilitates cell adhesion through affinity modulation of α2β1 integrin. These findings highlight the fact that syndecan-1 is a multidimensional cell surface receptor that has several regulatory domains to control various biological processes. In particular, the lung epithelium requires the syndecan-1 transmembrane domain to govern cell migration and is independent from its ability to control cell adhesion via the extracellular domain.  相似文献   

10.
Post-translational modifications of the N-terminal histone tails, including lysine methylation, have key roles in regulation of chromatin and gene expression. A number of protein modules have been identified that recognize differentially modified histone tails and provide their proteins with the capacity to sense such modifications. Here, we identify the CW domain of plant and animal chromatin-related proteins as a novel module that recognizes different methylated states of lysine 4 on histone H3 (H3K4me). The solution structure of the CW domain of the Arabidopsis ASH1 HOMOLOG2 (ASHH2) histone methyltransferase provides insight into how different CW domains can distinguish different methylated histone tails. We provide evidence that ASHH2 is acting on H3K4me-marked genes, allowing for ASHH2-dependent H3K36 tri-methylation, which contributes to sustained expression of tissue-specific and developmentally regulated genes. This suggests that ASHH2 is a combined 'reader' and 'writer' of the histone code. We propose that different CW domains, dependent on their specificity for different H3K4 methylations, are important for epigenetic memory or participate in switching between permissive and repressive chromatin states.  相似文献   

11.
12.
13.
Patients with renal and colon cancer frequently develop IgG autoantibodies toward the NY-CO-38/PDZ-73 antigen, a protein of 652 amino acids (73 kDa) which contains three copies of the PDZ protein-protein interaction domain. The gene encoding PDZ-73 mapped to chromosome 11p15.4-p15.1. Additional tissue-specific isoforms were identified: PDZ-45, which lacks the third PDZ domain and the putative PEST protein degradation motif, is expressed in kidney, colon, small intestine, brain and testis; PDZ-54 and PDZ-59, which also lack the third PDZ domains, have unique carboxyl terminal amino acids and are expressed in brain, kidney, bladder, colon cancer and renal cancer; and a putative PDZ-37 isoform, containing only the third PDZ domain, that is expressed in the central nervous system. Immunohistochemical staining with anti-PDZ 73 monoclonal antibodies showed strong cytoplasmic reactivity in epithelial cells of the small intestine, colon and kidney tubules, with a prominent apical staining pattern in cells of the small intestine. The reactivity pattern of the antibodies with various tissues correlated with the mRNA expression pattern of the PDZ-45 isoform. The existence of multiple PDZ-73 isoforms with variations in tissue distribution, PDZ domains, protein degradation sequences and carboxyl terminal structure indicate that these isoforms have distinct tissue-specific functions.  相似文献   

14.
15.
16.
17.
Analogues of the human erythroid membrane skeletal component protein 4.1 have been identified in perfused rat tissues and human T and B lymphocyte cell lines. olyclonal antibodies were used which are specific for all domains of protein 4.1, the spectrin-actin-promoting 8-Kd peptide, the membrane-binding 30-Kd domain, and the 50-Kd domain. Antibody reactivity, by Western blotting of tissue homogenates, shows reactivity with proteins varying in molecular weight from 175 Kd to 30 Kd. Further, these protein 4.1 analogues appear to be expressed in a tissue-specific fashion. Of the analogues detected there appear to be at least three classes: analogues containing all erythroid protein 4.1 domains, analogues containing all domains but with modified antigenic epitopes, and analogues containing only some domains. Chemical cleavage at cysteine linkages indicates that in analogues containing the 30-Kd region the location of cysteine is highly conserved. This datum suggests that in nonerythroid 4.1 isoforms of higher molecular weight the additional protein mass is added to the amino terminal end (30 Kd end).  相似文献   

18.
Grb14, a member of the Grb7-10-14 family of cytoplasmic adaptor proteins, is a tissue-specific negative regulator of insulin signaling. Grb7-10-14 contain several signaling modules, including a Ras-associating (RA) domain, a pleckstrin-homology (PH) domain, a family-specific BPS (between PH and SH2) region, and a C-terminal Src-homology-2 (SH2) domain. We showed previously that the RA and PH domains, along with the BPS region and SH2 domain, are necessary for downregulation of insulin signaling. Here, we report the crystal structure at 2.4-Å resolution of the Grb14 RA and PH domains in complex with GTP-loaded H-Ras (G12V). The structure reveals that the Grb14 RA and PH domains form an integrated structural unit capable of binding simultaneously to small GTPases and phosphoinositide lipids. The overall mode of binding of the Grb14 RA domain to activated H-Ras is similar to that of the RA domains of RalGDS and Raf1 but with important distinctions. The integrated RA-PH structural unit in Grb7-10-14 is also found in a second adaptor family that includes Rap1-interacting adaptor molecule (RIAM) and lamellipodin, proteins involved in actin-cytoskeleton rearrangement. The structure of Grb14 RA-PH in complex with H-Ras represents the first detailed molecular characterization of tandem RA-PH domains bound to a small GTPase and provides insights into the molecular basis for specificity.  相似文献   

19.
Alternative splicing of cellular pre-mRNA is responsible for production of multiple mRNAs from individual genes. Splice variants are expressed in cell- and tissue-specific contexts that are important in development and physiology. Alternative splicing can serve as a regulatory mechanism whereby developmental programming and environmental factors/stimuli affect biological activities of translated proteins. Cyclooxygenase (COX)-1 and -2 genes produce splice variants whose biological expression, relevance, and activities have been of significant interest. COX variants are produced by a variety of splicing mechanisms. Four structural domains of the COX proteins (the amino terminal signal peptide, membrane-binding domain, dimerization domain, and catalytic domain) are defined by specific COX exons. COX splice variants may, therefore, result in potential changes in protein subcellular localization, dimerization, and activity. COX variant proteins may act in roles which diverge from those of COX-1 and -2.  相似文献   

20.
Xu Q  Modrek B  Lee C 《Nucleic acids research》2002,30(17):3754-3766
We have developed an automated method for discovering tissue-specific regulation of alternative splicing through a genome-wide analysis of expressed sequence tags (ESTs). Using this approach, we have identified 667 tissue-specific alternative splice forms of human genes. We validated our muscle-specific and brain-specific splice forms for known genes. A high fraction (8/10) were reported to have a matching tissue specificity by independent studies in the published literature. The number of tissue-specific alternative splice forms is highest in brain, while eye-retina, muscle, skin, testis and lymph have the greatest enrichment of tissue-specific splicing. Overall, 10-30% of human alternatively spliced genes in our data show evidence of tissue-specific splice forms. Seventy-eight percent of our tissue-specific alternative splices appear to be novel discoveries. We present bioinformatics analysis of several tissue-specific splice forms, including automated protein isoform sequence and domain prediction, showing how our data can provide valuable insights into gene function in different tissues. For example, we have discovered a novel kidney-specific alternative splice form of the WNK1 gene, which appears to specifically disrupt its N-terminal kinase domain and may play a role in PHAII hypertension. Our database greatly expands knowledge of tissue-specific alternative splicing and provides a comprehensive dataset for investigating its functional roles and regulation in different human tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号