首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reviews some of the experimental data regarding the effects of hypertension and antihypertensive drugs on the arterial wall. Hypertension induces major changes in both the arterial media and intima. Experimental studies from our own and other laboratories have demonstrated that medial smooth muscle cells in several forms of hypertension in the rat undergo hypertrophy and nuclear polyploidy which contribute, along with connective tissue alterations, to a large increase in medial mass. Our studies in the deoxycorticosterone/salt-hypertensive rat indicate that such changes may be difficult to regress, despite prolonged control of the hypertension. In the arterial intima, major alterations in the endothelium are induced by hypertension in association with increase in arterial permeability. Marked enhancements of adherence of circulating white blood cells to the endothelium can also be demonstrated along with penetration of blood monocytes and their accumulation in the subendothelial space. Hypertension also appears to stimulate the migration and proliferation of smooth muscle cells in the intima, and evidence is beginning to accumulate that endogenous growth factors within the artery may be involved in this process. Essentially all of the intimal changes which we have observed as a result of arterial hypertension are also present with cholesterol feeding although intimal accumulation of lipid and formation of atherosclerotic plaques do not occur with hypertension alone. On the other hand, in hypercholesterolemic animals, hypertension appears to act as a promoter of atherogenesis. Several antihypertensive drugs may influence the atherosclerotic process. The experimental data regarding the effects of beta blockers and calcium antagonists in the cholesterol-fed rabbit are discussed. Though of considerable interest, the clinical relevance of the findings remains uncertain.  相似文献   

2.
Diabetes causes accelerated atherosclerosis and subsequent cardiovascular disease through mechanisms that are poorly understood. We have previously shown, using a porcine model of diabetes-accelerated atherosclerosis, that diabetes leads to an increased accumulation and proliferation of arterial smooth muscle cells in atherosclerotic lesions and that this is associated with elevated levels of plasma triglycerides. We therefore used the same model to investigate the mechanism whereby diabetes may stimulate smooth muscle cell proliferation. We show that lesions from diabetic pigs fed a cholesterol-rich diet contain abundant insulin-like growth factor-I (IGF-I), in contrast to lesions from non-diabetic pigs. Furthermore, two fatty acids common in triglycerides, oleate and linoleate, enhance the growth-promoting effects of IGF-I in smooth muscle cells isolated from these animals. These fatty acids accumulate predominantly in the membrane phospholipid pool; oleate accumulates preferentially in phosphatidylcholine and phosphatidylethanolamine, whereas linoleate is found mainly in phosphatidylethanolamine. The growth-promoting effects of oleate and linoleate depend on phospholipid hydrolysis by phospholipase D and subsequent generation of diacylglycerol. Thus, concurrent increases in levels of IGF-I and triglyceride-derived oleate and linoleate in lesions may contribute to accumulation and proliferation of smooth muscle cells and lesion progression in diabetes-accelerated atherosclerosis.  相似文献   

3.
A Penn 《Mutation research》1990,239(3):149-162
The arteriosclerotic plaque is the lesion most often associated with cardiovascular disease, which is the leading cause of death in North America and Western Europe. Plaques are composed of cells (mostly smooth muscle cells but also macrophages and some lymphocytes) and formed elements (cellular debris, collagen, elastin, glycosaminoglycans, lipid droplets, cholesterol crystals and sometimes calcium deposits). Proliferation of smooth muscle cells is essential to plaque formation and development. Most theories of plaque development have viewed this proliferation as a secondary event following an initiating stimulus (e.g., endothelial injury). According to this view, the proliferating smooth muscle cells are otherwise identical to the large number of non-proliferating smooth muscle cells in the artery wall. The 'monoclonal' hypothesis of plaque formation presents a fundamentally different view; namely, that the cell proliferation critical to plaque development follows the stable transformation of smooth muscle cells and that the plaques can therefore be viewed as benign smooth muscle cell tumors of the artery wall. Environmental agents, including viruses and chemicals that have been previously associated with cell transformation and tumorigenesis may therefore also contribute directly to plaque development. Data are provided from in vivo and in vitro studies in support of this proposition. Evidence is also presented that in standardized assays human and animal plaque DNAs elicit responses similar to those elicited by tumor DNAs. Thus, both plaque formation and tumorigenesis may share common mechanisms.  相似文献   

4.
A study of the participation of the smooth muscle cells in the formation of atherosclerotic lesions was made on the autopsy material with the use of specific antiserum to the smooth muscle actomyosin and of indirect Coons' method. Typical forms of atherosclerotic lesions in the aorta, cerebral vessels and coronary arteries were studied. Smooth muscle cells were detected in the thickened intima alongside the atherosclerotic lesions, in fatty streaks, in the fibrous tissue of the atherosclerotic plaque, but they were not found in the atheromatous masses. The proliferation and migration of the smooth muscle cells is regarded as an essential factor in the pathogenetic mechanisms of atherosclersis.  相似文献   

5.
We characterized atherosclerotic lesions in Syrian F1B hamsters fed a diet high in saturated fat and cholesterol. Total cholesterol, non-high-density lipoprotein cholesterol, and triglycerides were significantly higher for treated animals than for low fat controls. After 4, 12, 18, 26, 32 and 44 weeks on either diet, the vasculature was fixed in situ and the aortic arch prepared for light and electron microscopy and immunohistochemistry. Fatty streak lesions comprised of foam cells were noted at 4 weeks along the inner curvature of the aortic arch. Fibromuscular lesions became evident at 26 weeks with excess connective tissue and a thickened media. Lesion size increased as foam cells accumulated in the subendothelial space and collagen was deposited in the upper media beneath an intact internal elastic lamina. By 44 weeks an advanced lesion had developed that consisted of a smooth muscle and extracellular matrix cap with an intact endothelium over a lipid rich core. The core consisted of foam cells, extracellular lipid, necrotic debris, cholesterol clefts, calcium deposits, and extracellular proteins. Oxidized LDL was only detected in the treated hamsters and localized to foam cells in early lesions, spread to extracellular matrix in fibrofatty lesions, and further involved medial smooth muscle cells in advanced lesions. Cyclooxygenases-1 and -2 were observed at low levels in both groups; however, cyclooxygenase-2 was noticeably upregulated in the early lesions of treated animals. Atherosclerotic lesions similar to each major stage of pathology in humans developed at a predictable site in the hamster aorta in a relatively short period.  相似文献   

6.
Summary Purified heparin-binding growth factor-1 (HBGF-1) stimulated low density lipoprotein binding, internalization, and degradation in isolated human adult arterial smooth muscle cells. Exposure of quiescent cells to HBGF-1 in serum-free, defined medium increased both low density lipoprotein (LDL) receptor activity and de novo cholesterol biosynthesis. Both events preceded the onset of DNA synthesis by 6 to 9 h. HBGF-1 acted additively with platelet-derived growth factor (PDGF) to maximally stimulate cell surface LDL receptor binding activity and DNA synthesis in the smooth muscle cells. The presence of LDL was required for maximal mitogenic activity of HBGF-1 and PDGF. In the presence of LDL, growth factor-stimulated, proliferating human smooth muscle cells accumulated cholesterol ester and triglycerides. The results suggest that HBGF-1, PDGF, and LDL act together to promote the maximal proliferation of smooth muscle cells in culture. Chronic exposure to the three growth promoters may contribute to the smooth muscle cell hyperplasia and lipid accumulation observed in atherosclerotic lesions. This work was supported by the National Cancer Institute grants CA 37589 and HD 03275, National Council for Tobacco Research grant 1718, and a grant from RJR Nabisco, Inc.  相似文献   

7.
We show here that BALB/c mice inoculated with murine cytomegalovirus (MCMV) express viral antigens in the endothelial and smooth muscle cells of the aortic wall, and that accumulation of inflammatory cells in the aortic lumen, similar to that seen in early atherosclerotic lesions in humans, colocalizes with the site of virus antigen expression. Immunosuppression of the mice at the time of virus infection increased the expression of viral antigens and the size of early atherosclerotic lesions in the intima. The percentage of the low-density lipoprotein cholesterol (LDL-C), the major lipid contributor to atherosclerotic plaques, was significantly increased in the serum of MCMV-infected mice, whether or not the mice were fed a high cholesterol diet. Human cytomegalovirus (HCMV) significantly increased the esterified cholesterol component of the total cholesterol in a human arterial smooth muscle cell line infected in vitro with HCMV. These results suggest that CMV infection is involved in two of the major mechanisms that lead to development of atherosclerosis, i.e., immune injury and high LDL-C.  相似文献   

8.
Transactivation of EGF-receptor (EGFR) by G-protein coupled receptors (GPCRs) is emerging as an important pathway in cell proliferation, which plays a crucial role in the development of atherosclerotic lesion. Angiotensin II (Ang II) has been identified to have a major role in the formation of atherosclerotic lesions, although the underlying mechanisms remain largely unclear. We hypothesize that Ang II promotes the proliferation and migration of smooth muscle cells through the release of heparin-binding epidermal growth factor like growth factor (HB-EGF), transactivation of EGFR and activation of Akt and Erk 1/2, with matrix metalloproteases (MMPs) playing a dispensable role. Primary rat aortic smooth muscle cells were used in this study. Smooth muscle cells rendered quiescent by serum deprivation for 12 h were treated with Ang II (100 nM) in the presence of either GM6001 (20 microM), a specific inhibitor of MMPs or AG1478 (10 microM), an inhibitor of EGFR. The levels of phosphorylation of EGFR, Akt and Erk 1/2 were assessed in the cell lysates. Inhibition of MMPs by GM6001 significantly attenuated Ang II-stimulated phosphorylation of EGFR, suggesting that MMPs may be involved in the transactivation of EGFR by Ang II receptor. Furthermore Ang II-stimulated proliferation and migration of smooth muscle cells were significantly blunted by inhibiting MMPs and EGFR and applying HB-EGF neutralization antibody, indicating that MMPs, HB-EGF and EGFR activation is necessary for Ang-II stimulated migration and proliferation of smooth muscle cells. Our results suggest that inhibition of MMPs may represent one of the strategies to counter the mitogenic and motogenic effects of Ang II on smooth muscle cells and thereby prevent the formation and development of atherosclerotic lesions.  相似文献   

9.
The ubiquitous connective tissues contain a wide range of cells including fibroblasts, osteoblasts and chondroblasts. Recently it has been demonstrated that another principal cell of the connective tissue is the smooth muscle cell in several organ systems. These have been shown to be responsible for the synthesis of the connective tissue matrix components of the uterine myometrium and of the arterial system, including collagen, both elastic fibre proteins and glycosaminoglycan. Microtubule inhibitors such as colchicine and vinblastine, and iron chelators such as alpha,alpha -dipyridyl have been used to study their morphologic and chemical effects on collagen synthesis and secretion. Colchicine produces an increase in large Golgi-associated vacuoles, which sometimes contain material reminiscent of aggregates of collagen macromolecules. Vinblastine produces alterations in the endoplasmic reticulum cisternae similar to alterations seen in ascorbic acid deficiency, and alpha,alpha-dipyridyl increases the frequency of regions in cells, interpretable as potential sites of communication of rough endoplasmic reticulum cisternae with the cell surface. Ferritin conjugated anti-procallagen sera were used to localize procollagen in cells and demonstrated procollagen not only in the cisternae of rough endoplasmic reticulum but in all of the elements of the Golgi complex as well. The studies reported in this review have shown that in cell culture arterial smooth muscle will produce not only the microfibrillar protein of the elastic fibre but soluble and/or insoluble elastin as well. Recent studies on serum factors responsible for the proliferation of connective tissue cells have demonstrated that at least one of the principal factors responsible for fibroblast and/or smooth muscle cell proliferation in culture is derived from thrombocytes. Medium containing serum derived from cell-free plasma lacks most of this proliferative effect which can be reinstated when platelets are present during recalcification to form serum. This effect is due to the platelet release reaction as shown by combining supernatant factors derived from platelets exposed to purified thrombin to cell-free, plasma derived serum. Studies with macrophages have also suggested that phagocytic macrophages release factor(s) into a cell culture medium that may also participate in stimulating fibroblasts to proliferate in vitro. The means by which these factors stimulate fibroblast proliferation and connective tissue synthesis remains to be elucidated.  相似文献   

10.
Both in monkeys (Rhesus and Cynomolgus) and in New Zealand rabbits fed an atherogenic diet, a marked delay in the appearance of atherosclerotic lesions of the cerebral arteries in comparison with other arterial districts has been observed. This appearance has been described in monkeys as relatively earlier if hypertension is added to the atherogenic diet. Preliminary observations on a little group of rabbits on a 3 months hypercholesterolic diet, subjected to Goldblatt aortic coarctation, have shown an increase of blood pressure and a severe gross atherosclerotic involvement of aorta, resembling the one obtainable after 6 months of atherogenic diet. Histologically, the aorta predominantly shows lesions of the fatty streaks type with necrotic areas in the deep; the carotid lesions show some lipid in smooth muscle cells disseminated in a sub-endothelial "edematous" space (rich in protein). The cerebral arteries do not show any lesion. At TEM, the aortic lesions look sometimes as advanced plaques with an initial fibrosis at the surface; the carotid lesions are characterized by a granular deposit in the sub-endothelial space in which some smooth muscle cells (with lipid in the cytoplasm) are present; in the cerebral arteries only the presence of collagen fibers among the smooth muscle cells of the media, never observed in the animals fed the atherogenic diet alone, has sometimes been noted.  相似文献   

11.
The protective effect of vitamins E (alpha-tocopherol) and C (L-ascorbic acid) in the prevention of cardiovascular disease (CVD) has been shown in a number of situations but a secure correlation is not universally accepted. Under certain conditions, both, L-ascorbic acid and alpha-tocopherol can exhibit antioxidant properties and thus may reduce the formation of oxidized small molecules, proteins and lipids, which are a possible cause of cellular de-regulation. However, non-antioxidant effects have also been suggested to play a role in the prevention of atherosclerosis. Vitamin E and C can modulate signal transduction and gene expression and thus affect many cellular reactions such as the proliferation of smooth muscle cells, the expression of cell adhesion and extracellular matrix molecules, the production of O(2)(-) by NADPH-oxidase, the aggregation of platelets and the inflammatory response. Vitamins E and C may modulate the extracellular matrix environment by affecting VSMC differentiation and the expression of connective tissue proteins involved in vascular remodeling as well as the maintenance of vascular wall integrity. This review summarizes individually the molecular activities of vitamins E and C on the cells within the connective tissue of the vasculature, which are centrally involved in the maintenance of an intact vascular wall as well as in the repair of atherosclerotic lesions during disease development.  相似文献   

12.
Stem cells have the ability to differentiate into a variety of cells to replace dead cells or to repair tissue. Recently, accumulating evidence indicates that mechanical forces, cytokines and other factors can influence stem cell differentiation into vascular smooth muscle cells (SMCs). In developmental process, SMCs originate from several sources, which show a great heterogenicity in different vessel walls. In adult vessels, SMCs display a less proliferative nature, but are altered in response to risk factors for atherosclerosis. Traditional view on SMC origins in atherosclerotic lesions is challenged by the recent findings that stem cells and smooth muscle progenitors contribute to the development of atherosclerotic lesions. Vascular progenitor cells circulating in human blood and the presence of adventitia in animals are recent discoveries, but the source of these cells is still unknown. The present review gives an update on the progress of stem cell and SMC research in atherosclerosis, and discusses possible mechanisms of stem/progenitor cell differentiation that contribute to the disease process.  相似文献   

13.
High lipoprotein(a) (Lp(a)) levels are a major risk factor for the development of atherosclerosis. The risk of elevated Lp(a) concentration is increased significantly in patients who also have high levels of low density lipoprotein (LDL) cholesterol. To test the hypothesis that increased plasma levels of Lp(a) may enhance the development of atherosclerosis in the setting of hypercholesterolemia, we generated Watanabe heritable hyperlipidemic (WHHL) transgenic (Tg) rabbits expressing human apolipoprotein(a) (apo(a)). We report here that Tg WHHL rabbits developed more extensive advanced atherosclerotic lesions than did non-Tg WHHL rabbits. In particular, the advanced atherosclerotic lesions in Tg WHHL rabbits were frequently associated with calcification, which was barely evident in non-Tg WHHL rabbits. To investigate the molecular mechanism of Lp(a)-induced vascular calcification, we examined the effect of human Lp(a) on cultured rabbit aortic smooth muscle cells and found that smooth muscle cells treated with Lp(a) showed increased alkaline phosphatase activity and enhanced calcium accumulation. These results demonstrate for the first time that Lp(a) accelerates advanced atherosclerotic lesion formation and may play an important role in vascular calcification.  相似文献   

14.
Vascular smooth muscle cells in atherosclerotic lesions are phenotypically different from those in the normal arterial wall, and no expression of macrophage colony stimulating factor (M-CSF) receptor encoded by the proto-oncogene c-fms has been demonstrated in normal smooth muscle cells. In the present study, we demonstrated expression of c-fms and high affinity binding of M-CSF in smooth muscle cells isolated from an experimental rabbit model of arteriosclerosis (intimal smooth muscle cells), while no expression of c-fms was shown in medial smooth muscle cells. In the immunocytochemical analysis, both types of smooth muscle cells similarly reacted with an antibody specific to muscle cells (HHF 35) but did not react with an antibody specific to rabbit macrophages (RAM 11). In intimal smooth muscle cells, when cells were incubated with acetylated low density lipoproteins (LDL), the binding of acetylated LDL and foam cell formation were observed. In response to M-CSF, tyrosine-phosphorylation, as analyzed by the detection of anti-phosphotyrosine-reactive proteins, and an increased rate of cell proliferation were observed in intimal smooth muscle cells. These results indicated that intimal smooth muscle cells have the characteristics of monocyte-macrophages such as the expression of c-fms, which may be related to their proliferation and phenotypic conversion into foam cells in atheromatous lesions.  相似文献   

15.
16.
The reduced expression (haplodeficiency) of the main brain derived neurotrophic factor receptor, namely TrkB is associated with reduced atherosclerosis, smooth muscle cells accumulation and collagen content in the lesion. These data support the concept that brain derived neurotrophic factor of vascular origin may contribute to atherosclerosis. However, to date, no experimental approach was possible to investigate this issue due to the lethality of brain derived neurotrophic factor null mice. To overcome these limitations, we generated a mouse model with a conditional deletion of brain derived neurotrophic factor in endothelial cells (Tie-2 Cre recombinase) on an atherosclerotic prone background (apolipoprotein E knock out) and investigated the effect of conditional brain derived neurotrophic factor deficiency on atherosclerosis. Despite brain derived neurotrophic factor reduction in the vascular wall, mice with conditional deletion of brain derived neurotrophic factor did not develop larger atherosclerotic lesion compared to controls. Smooth muscle cell content as well as the distribution of total and fibrillar collagen was similar in the atherosclerotic lesions from mice with brain derived neurotrophic factor conditional deficiency compared to controls. Finally an extended gene expression analysis failed to identify pro-atherogenic gene expression patterns among the animal with brain derived neurotrophic factor deficiency. In spite of the reduced brain derived neurotrophic factor expression, similar atherosclerosis development was observed in the brain derived neurotrophic factor conditional deficient mouse compared to controls. These pieces of evidence indicate that endothelial derived-brain derived neurotrophic factor is not a pro-atherogenic factor and would rather suggest to investigate the role of other TrkB activators on atherosclerosis.  相似文献   

17.
A large number of constituents, such as growth factors, cytokines, and vasoregulatory molecules, contribute a network of cellular interactions to atherosclerotic lesions, and current evidence suggests that granulocyte-macrophage colony-stimulating factor (GM-CSF) is one of these constituents. We conducted this study to determine whether GM-CSF has an effect on the fate and function of macrophages. We examined the effect of GM-CSF on macrophages in vitro with a highly inducible HL60 subclone (HL60/DU-1) that we recently established. HL60 cells have been reported to preserve functional GM-CSF receptors, but a GM-CSF allele was rearranged and partially deleted. HL60/DU-1 cells were devoid of GM-CSF immunoreactivity and of autocrine stimulation of GM-CSF. HL60/DU-1 cells fated to die soon after terminal differentiation of macrophages by 1, 25-dihydroxy vitamin D(3) treatment. We found cell death to be mediated mainly by necrosis, not apoptosis, as confirmed by DNA fragmentation in agarose gel electrophoresis, morphological observation under a fluorescence microscope, and assay of lactate dehydrogenase release. Exogeneously administered GM-CSF rescued cells from necrotic death and caused them to survive and generate superoxide anions. We also conducted immunohistochemical analysis on an atherosclerotic human artery. Macrophages, endothelial cells, and smooth muscle cells were found to be GM-CSF positive in an atherosclerotic lesion. In summary, GM-CSF, which is produced by macrophages, endothelial cells, and smooth muscle cells, is thought to act in an autocrine and a paracrine fashion as a necrosis-inhibiting factor against arterial macrophages. This unique function may play an important role in ensuring survival and promoting function in atherosclerotic lesions.  相似文献   

18.
The migration of arterial smooth muscle cells from the media to the intima is a crucial event for the development of the atherosclerotic lesion, and platelet derived growth factor (PDGF) is thought to play an important role in this process. Here we report that the spontaneous migration of bovine smooth muscle (BSM) cells is dependent on endogenously produced basic fibroblast growth factor (bFGF). PDGF stimulates the migration of BSM cells and its effect is abolished by affinity purified anti-bFGF antibody. PDGF induces bFGF mRNA in BSM cells. These results indicate that the effect of PDGF on the migration of BSM cells may be mediated by the induction of endogenous bFGF.  相似文献   

19.
Atherosclerosis is a dynamic multifaceted disease which affects the aorta and its major branches, characterized by the presence of lesions called atheromatous plaques. The plaque is a focal thickening of the intima caused by proliferation of smooth muscle cells, and the deposition of cholesterol, other lipids, hydroxyapatite and fibrous connective tissue. It is proposed that the determinant step of the process which leads to the disease atherosclerosis is the calcium precipitation which traps cholesterol in the plaque precursor matrix which contains lipoproteins, calcium carbonate, hydroxyapapatite, triglycerides, albumin, calmodulin and other proteins. The bear, a species which does not contract the disease is used as an example in support of the hypothesis. The bear's ability to regulate calcium levels and the regulation of acid base balance via regulation of carbon dioxide levels permits the control of the determinant step of plaque formation, that is calcification of the plaque.  相似文献   

20.
α1 Nicotinic acetylcholine receptor (α1nAChR) is an important nicotine receptor that is widely distributed in vascular smooth muscle cells, macrophages, and endothelial cells. However, the role of α1nAChR in nicotine-mediated atherosclerosis remains unclear. The administration of nicotine for 12 weeks increased the area of the atherosclerotic lesion, the number of macrophages infiltrating the plaques, and the circulating levels of inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α, in apolipoprotein E-deficient (ApoE−/−) mice fed a high-fat diet. Nicotine also increased α1nAChR, calpain-1, matrix metalloproteinase-2 (MMP-2), and MMP-9 expression in the aortic tissue. Silencing of α1nAChR with an adenoassociated virus decreased the atherosclerotic size, lesion macrophage content, and circulating levels of inflammatory cytokines and suppressed α1nAChR, calpain-1, MMP-2, and MMP-9 expression in the nicotine group. In vitro, nicotine-induced α1nAChR, calpain-1, MMP-2, and MMP-9 expression in mouse vascular smooth muscle cells (MOVAS) and macrophages (RAW264.7), and enhanced the migration and proliferation of these cells. The silencing of α1nAChR inhibited these effects of nicotine MOVAS and RAW264.7 cells. Thus, we concluded that nicotine promoted the development of atherosclerosis partially by inducing the migration and proliferation of vascular smooth muscle cells and macrophages and inducing an inflammatory reaction. The effect of nicotine on atherogenesis may be mediated by α1nAChR-induced activation of the calpain-1/MMP-2/MMP-9 signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号