首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fatty acids containing a prochiral tritium label have often been used in the study of enzymatic reactions which involve an obligatory step of hydrogen abstraction. In the lipoxygenase reaction, the primary isotope effect associated with this approach is detected as an isotopic enrichment of the substrate. Herein we characterize a previously unrecognized secondary isotope effect which changes the specific activity of both the substrate and product. The 12-lipoxygenase of human platelets removes the 10-LS hydrogen of arachidonic acid in the formation of 12-hydroperoxyeicosatetraenoic acid. We studied the specific activity changes associated with conversion of the enantiomerically labeled [10-DR-3H]arachidonic acid to 12-[10-3H]hydroxyeicosatetraenoic acid in aspirin-treated platelets. [3-14C]Arachidonic acid served as internal standard. The most pronounced change in 3H/14C ratio in the early stages of reaction was a 15-20% deficiency of tritium in the product. Later, the remaining arachidonate showed a marked increase in 3H/14C ratio. The changes in specific activity closely matched those predicted for a secondary isotope effect. Comparison of these data with the theoretical equations for a secondary isotope effect indicated the 10-DR-3H substrate reacted at about 84% of the rate of unlabeled molecules. Interestingly, this secondary isotope effect is similar in magnitude to the secondary isotope effect in autoxidation reactions, a finding compatible with a basic similarity in reaction mechanisms in enzymatic and non-enzymatic oxygenation of lipids.  相似文献   

2.
Secondary tritium isotope effects were used to study the aqueous hydrolysis of a series of α- and β-glycopyranosides of N-acetyl-d-glucosamine. The magnitude of the secondary tritium isotope effects, and their dependence on the structure of the aglycone, are compatible with the carbonium ion mechanism suggested for the specific acid catalysis of these compounds by Piszkiewicz and Bruice (1–3). The secondary tritium isotope effect determined for the spontaneous hydrolysis of the p-nitrophenyl-2-acetamido-2-deoxy-β-d-glucopyranoside is not consistent with an intramolecular, nucleophilic displacement mechanism. A mechanism involving the equilibrium formation of a carbonium ion-anion pair is proposed. The relevance of these model studies to hydrolysis of oligosaccharides of N-acetyl-d-glucosamine by lysozyme is discussed.  相似文献   

3.
alpha-Secondary tritium kinetic isotope effects ranging from 1.17 to 1.26 were measured for the hydrolysis of alpha-D-glucopyranosyl fluoride (forming beta-D-glucose) catalyzed by several glucoamylases and a glucodextranase. These results indicate that cleavage of the C-F bond is slow and that the enzymic transition state has significant oxo-carbonium ion character. Strong support for this conclusion is provided by the agreement found in the case of Rhizopus niveus glucoamylase (alpha-TV/K 1.26; Km 26 mM) between measured values of the alpha-secondary deuterium kinetic isotope effects (alpha-DV/K 1.16; alpha-DV 1.20) and those calculated from the tritium isotope effect. The data are consistent with the promotion of an intramolecular elimination of fluoride by the present exo-alpha-glucanases based on their ability to stabilize, perhaps with a counter ion, the development of a carbonium ion-like transition state. Although the oxo-carbonium ion is formally denoted as an intermediate it could represent a transition state along a reaction pathway to a covalent glucosyl intermediate.  相似文献   

4.
Karsten WE  Hwang CC  Cook PF 《Biochemistry》1999,38(14):4398-4402
The NAD-malic enzyme from Ascaris suum catalyzes the divalent metal ion-dependent oxidative decarboxylation of L-malate to give pyruvate and CO2, with NAD+ as the oxidant. Alpha-secondary tritium kinetic isotope effects were measured with NAD+ or APAD+ and L-malate-2-H(D) and several different divalent metal ions. The alpha-secondary tritium kinetic isotope effects are slightly higher than 1 with NAD+ and L-malate as substrates, much larger than the expected inverse isotope effect for a hybridization change from sp2 to sp3. The alpha-secondary tritium kinetic isotope effects are reduced to values near 1 with L-malate-2-D as the substrate, regardless of the metal ion that is used. Data suggest the presence of quantum mechanical tunneling and coupled motion in the malic enzyme reaction when NAD+ and malate are used as substrates. Isotope effects were also measured using the D/T method with NAD+ and Mn2+ as the substrate pair. A Swain-Schaad exponent of 2.2 (less than the value of 3.26 expected for strictly semiclassical behavior) is estimated, suggesting the presence of other slow steps along the reaction pathway. With APAD+ and Mn2+ as the substrate pair, inverse alpha-secondary tritium kinetic isotope effects are observed, and a Swain-Schaad exponent of 3.3 is estimated, consistent with rate-limiting hydride transfer and no quantum mechanical tunneling or coupled motion. Data are discussed in terms of the malic enzyme mechanism and the theory developed by Huskey for D/T isotope effects as an indicator of tunneling [Huskey, W. P. (1991) J. Phys. Org. Chem. 4, 361-366].  相似文献   

5.
Oxygen isotope effects on the ribulosebisphosphate oxygenase reaction   总被引:1,自引:0,他引:1  
The oxygen isotope effect at the substrate O2 on the oxygenase reaction of ribulose bisphosphate carboxylase/oxygenase from spinach is pH and metal dependent. The pH dependence between pH 7.4 and 8.9 is different with Mg2+ (steady decrease in this isotope effect from 1.036 to 1.030) and Mn2+ (minimum isotope effect of 1.028 at pH 8.0). Deuteration of the substrate ([3-2H]ribulose bisphosphate) has no influence on the isotope effect. The results are interpreted as a direct participation of the metal ion in the oxygen-sensitive step, i.e. carbon-oxygen bond formation and the stabilization of the intermediates. In the overall reaction oxygen addition is a major rate-limiting step, and the observed isotope effect is probably close to the intrinsic oxygen isotope effect of the reaction. The basic mechanisms for carboxylation and oxygenation of ribulose bisphosphate appear to be the same.  相似文献   

6.
S M Miller  J P Klinman 《Biochemistry》1983,22(13):3091-3096
Intrinsic primary hydrogen isotope effects (kH/kD) have been obtained for the carbon-hydrogen bond cleavage step catalyzed by dopamine beta-monooxygenase. Irreversibility of this step is inferred from the failure to observe back-exchange of tritium from TOH into substrate under conditions of dopamine turnover; this result cannot be due to solvent inaccessibility at the enzyme active site, since we will demonstrate [Ahn, N., & Klinman, J. P. (1983) Biochemistry (following paper in this issue)] that a solvent-derived proton or triton must be at the enzyme active site prior to substrate activation. As shown by Northrop [Northrop, D. B. (1975) Biochemistry 14, 2644], for enzymatic reactions in which the carbon-hydrogen bond cleavage step is irreversible, comparison of D(V/K) to T(V/K) allows an explicit solution for kH/kD. Employing a double-label tracer method, we have been able to measure deuterium isotope effects on Vmax/Km with high precision, D(V/K) = 2.756 +/- 0.054 at pH 6.0. The magnitude of the tritium isotope effect under comparable experimental conditions is T(V/K) = 6.079 +/- 0.220, yielding kH/kD = 9.4 +/- 1.3. This result was obtained in the presence of saturating concentrations of the anion activator fumarate. Elimination of fumarate from the reaction mixture leads to high observed values for isotope effects on Vmax/Km, together with an essentially invariant value for kH/kD = 10.9 +/- 1.9. Thus, the large disparity between isotope effects, plus or minus fumarate, cannot be accounted for by a change in kH/kD, and we conclude a role for fumarate in the modulation of the partitioning of enzyme-substrate complex between catalysis and substrate dissociation. On the basis of literature correlations of primary hydrogen isotope effects and the thermodynamic properties of hydrogen transfer reactions, the very large magnitude of kH/kD = 9.4-10.9 for dopamine beta-monooxygenase suggests an equilibrium constant not very far from unity for the carbon-hydrogen bond cleavage step. This feature, together with the failure to observe re-formation of dopamine from enzyme-bound intermediate or product and overall rate limitation of enzyme turnover by product release, leads us to propose a stepwise mechanism for norepinephrine formation from dopamine in which carbon-hydrogen bond cleavage is uncoupled from the oxygen insertion step.  相似文献   

7.
The mechanism of the galactosyltransferase-catalyzed reaction was probed using positional isotope exchange, alpha-secondary deuterium isotope effects, and inhibition studies with potential transition state analogs. Incubation of [beta-18O2, alpha beta-18O]UDP-galactose and alpha-lactalbumin with galactosyltransferase from bovine milk did not result in any positional isotope exchange. The addition of 4-deoxy-4-fluoroglucose as a dead-end inhibitor did not induce any detectable positional isotope exchange. alpha-Secondary deuterium isotope effects of 1.21 +/- 0.04 on Vmax and 1.05 +/- 0.04 on Vmax/KM were observed for [1-2H]-UDP-galactose. D-Glucono-1,5-lactone, D-galactono-1,4-lactone, D-galactono-1,5-lactone, nojirimycin, and deoxynojirimycin, did not inhibit the galactosyl transfer reaction at concentrations less than 1.0 mM. The magnitude of the secondary deuterium isotope effect supports a mechanism in which the anomeric carbon of the galactosyl moiety has substantial sp2 character in the transition state. Therefore, the cleavage of the bond between the galactose and UDP moieties in the transition state has proceeded to a much greater extent than the formation of the bond between the galactose and the incoming glucose. The lack of a positional isotope exchange reaction indicates that the beta-phosphoryl group of the UDP is not free to rotate in the absence of an acceptor substrate.  相似文献   

8.
The pH dependence of the maximum velocity (V) for the phosphorylation of glucose, the V/Kglucose and the V/KMgATP have been obtained in H2O and 2H2O. In H2O, V decreases below a pK of 5.8, V/Kglucose decreases below a pK of 6.1 and V/KMgATP decreases below a pK of 6.7. In 2H2O, complex behavior is observed for these parameters as a function of pD. The ratios of the parameters in H2O and 2H2O above their respective pK values give solvent deuterium isotope effects of about 1.5-1.7 for all three parameters. When 1,5-anhydromannitol is used as an alternative substrate, an isotope effect different than unity is obtained only for V/K1,5-anhydromannitol which gives a value of about 0.7. Both the complex pH profiles and the relative magnitude of the isotope effects are interpreted in terms of a pH-dependent change in the E X glucose complex.  相似文献   

9.
Rickert KW  Klinman JP 《Biochemistry》1999,38(38):12218-12228
Previous measurements of the kinetics of oxidation of linoleic acid by soybean lipoxygenase 1 have indicated very large deuterium isotope effects, but have not been able to distinguish the primary isotope effect from the alpha-secondary effect. To address this question, singly deuterated linoleic acid was prepared, and enantiomerically resolved using the enzyme itself. Noncompetitive measurements of the primary deuterium isotope effect give a value of ca. 40 which is temperature-independent. The enthalpy of activation is low and isotope-independent, and there is a large isotope effect on the Arrhenius prefactor. A very large apparent secondary isotope effect (ca. 2.1) is measured with deuterium in the primary position, but a greatly reduced value (1.1) is observed with protium in the primary position. Mutagenesis of the active site leads to a significant reduction in k(cat) and perturbed isotope effects, in particular, a secondary effect of 5.6 when deuterium is in the primary position. The anomalous secondary isotope effects are shown to arise from imperfect stereoselectivity of hydrogen abstraction which, for the mutant, is attributed to a combination of inverse substrate binding and increased flexibility at the reactive carbon. After correction, a very large primary (76-84) and small secondary (1.1-1.2) kinetic isotope effects are calculated for both mutant and wild-type enzymes. The weight of the evidence is taken to favor hydrogen tunneling as the primary mechanism of hydrogen transfer.  相似文献   

10.
11.
Stopped flow studies of D2O kinetic solvent isotope effects on the reaction catalyzed by L-glutamate dehydrogenase reveal, in addition to several effects apparently attributable simply to pKa shifts, a 2-fold pH-independent effect on the velocity of the steady state oxidative deamination of L-glutamate by enzyme and NADP. Comparable pH-independent D2O kinetic solvent isotope effects are seen both in a transient phase of the reaction in which alpha-ketoglutarate is displaced by L-glutamate from an enzyme-NADPH-alpha-ketoglutarate (product) complex and in an analogous model reaction in which alpha-ketoglutarate is displaced by D-glutamate. These results suggest that alpha-ketoglutarate dissociation from an enzyme-NADPH-alpha-ketoglutarate complex is rate-limiting in the steady state.  相似文献   

12.
13.
14.
15.
A lipoxygenase was purified 300-fold from a homogenate supernatant of ripe tomato fruits by fractionated ammonium sulfate precipitation and anion exchange fast protein liquid chromatography. The specific linoleate oxygenase activity of the final enzyme preparation was 1300 nkat per mg protein at pH 6.8 and 25°C in the absence of any detergent. The enzyme oxygenated linoleic acid and α-linolenic acid at comparable rates, whereas γ-linolenic acid, arachidonic acid, 11,14-eicosadienoic acid and 11,14,17-eicosatrienoic acid were poor substrates. Linoleic acid was converted to 9(S)-hydroperoxy-10E,12Z-octadecadienoic acid, whereas 5(S)-HpETE, 11(S)-HpETE and 8(S)-HpETE were identified as major oxygenation products from arachidonic acid. The tomato lipoxygenase did not react with either dilinoleyl phosphatidylcholine or the lipid extract from beef heart mitochondria. The possible biological importance of the reaction of tomato lipoxygenase with arachidonic acid is discussed.  相似文献   

16.
The rate of linoleic acid peroxidation catalysed by soybean lipoxygenase I was studied as a function of the hydration degree of aerosol OT (bis(2-ethylhexyl) sulfosuccinate sodium salt) reversed micelles in octane. Lipoxygenase reaction parameters for the micelle-bound substrate were spectrophotometrically determined. The linoleic acid distribution between the micelles and octane was detected by the sedimentation method, with the concentration of linoleic acid in supernatant after settling of micelles (i.e. the concentration of free linoleic acid) being estimated by the enzymatic method. The apparent constant of linoleic acid distribution (the ratio of the bound and free substrate concentrations) was enhanced with increasing hydration of reversed micelles. The dependence of the enzymatic reaction rate on the bound substrate concentration obeyed the empiric Hill equation. The Hill coefficient remained practically constant (h = 1.34) as the hydration degree changed. Parameters of the lipoxygenase reaction, enzyme reaction limiting rate V and semi-saturation substrate concentration [S]0.5 increased with increasing degree of hydration and reached the optimum at [H2O]/[AOT] approximately 30, where dimensions of the micellar internal cavity coincided with those of the enzyme molecule. Some aspects of kinetic behavior of membrane-bound enzymes participating in chemical transformation of non-polar compounds dispersed in lipid phase are discussed.  相似文献   

17.
The acrosome reaction (AR) in bull spermatozoa was induced by the Ca2(+)-ionophore A23187, by dilauroylphosphatidylcholine or by arachidonic acid in the presence of Ca2+ in the incubation medium. The occurrence of AR was determined by following the release of acrosin from the cells. Nordihydroguaiaretic acid (NDGA), an inhibitor of both lipoxygenase and prostaglandin-synthetase, caused 35%, 43% and 69% inhibition of AR at concentrations of 1, 10 or 100 microM, respectively. Eicosatetraynoic acid (ETYA), an analogue of arachidonic acid, caused 17%, 61% and 77% inhibition of AR at concentrations of 20, 40 or 80 micrograms/ml, respectively. When AR was induced by arachidonic acid, ETYA, causes 36% and 58% inhibition at concentrations of 2 or 20 micrograms/ml, respectively. Under identical conditions, 100 microM indomethacin, a specific inhibitor of prostaglandin-synthetase, showed no inhibition but rather 35% stimulation at acrosin release rate. The fact that AR is inhibited by NDGA and not by indomethacin indicates that the lipoxygenase, rather than prostaglandin-synthetase, is involved in the mechanism of AR. Since the inhibition by NDGA is seen in the presence of the Ca-ionophore, we suggest that lipoxygenase activity is not involved in enhancing calcium transport into the cell, but rather at other steps in AR mechanism. A thin-layer chromatography revealed the presence of 15-HETE, the classical product of 15-lipoxygenase activity, which was identified by HPLC. Under AR conditions, there is an elevation of lipoxygenase products and the addition of NDGA caused a reduction in their levels. The inhibition of acrosin release by NDGA can be eliminated by adding 15-HETE or 15-HPETE to the incubation medium. In conclusion, we suggest here for the first time, a physiological role for 15-lipoxygenase in the mechanism of AR in mammalian spermatozoa.  相似文献   

18.
Different [7-3H]thymine preparations have been used to determine the inter- and intramolecular isotope effects of the 2-oxoglutarate-dependent thymine hydroxylation, catalyzed by thymine 7-hydroxylase (thymine, 2-oxoglutarate:oxygen oxidoreductase, EC 1.14.11.6). Specific activity ratios of products, viz., 3H2O and 5-hydroxymethyluracil, and remaining substrate to initial substrate have been determined. The influence on these ratios of intra- and intermolecular isotope effects at different degrees of tritium substitution has been analyzed. An intramolecular isotope effect with a kH/kT of about 6.5 has been found. No intermolecular isotope effect of TV/K could be detected when oxygen concentration was varied from 0.4 to 0.01 mM. This agrees with a mechanism in which 2-oxoglutarate is irreversibly changed before the bond-breaking in thymine takes place.  相似文献   

19.
20.
Cyclooxygenase catalysis by prostaglandin H synthase (PGHS) is thought to involve a multistep mechanism with several radical intermediates. The proposed mechanism begins with the transfer of the C13 pro-(S) hydrogen atom from the substrate arachidonic acid (AA) to the Tyr385 radical in PGHS, followed by oxygen insertion and several bond rearrangements. The importance of the hydrogen-transfer step to controlling the overall kinetics of cyclooxygenase catalysis has not been directly examined. We quantified the non-competitive primary kinetic isotope effect (KIE) for both PGHS-1 and -2 using several deuterated AAs, including 13-pro-(S) d-AA, 13,13-d2-AA and 10, 10, 13,13-d4-AA. The primary KIE for steady-state cyclooxygenase catalysis, Dkcat, ranged between 1.8 and 2.3 in oxygen electrode measurements. The intrinsic KIE of AA radical formation by C13 pro-(S) hydrogen abstraction in PGHS-1 was estimated to be 1.9-2.3 using rapid freeze-quench EPR kinetic analysis of anaerobic reactions and computer modeling to a mechanism that includes a slow formation of a pentadienyl AA radical and a rapid equilibration of the AA radical with a tyrosyl radical, NS1c. The observation of similar values for steady-state and pre-steady state KIEs suggests that hydrogen abstraction is a rate-limiting step in cyclooxygenase catalysis. The large difference of the observed KIE from that of plant lipoxygenases indicates that PGHS and lipoxygenases have very different mechanisms of hydrogen transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号