首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The examination of insulin exocytosis at the single cell level by conventional electrophysiologic and amperometric methods possesses inherent limitations, and may not accurately reflect the morphologic events of exocytosis of the insulin granule. To overcome some of these limitations, we show by epifluorescent microscopy of a fluorescent dye, FM1-43, its incorporation into the plasma membrane and oncoming insulin granules undergoing exocytosis, and their core proteins. Using this method, we tracked exocytosis in real-time in insulinoma INS-1 and single rat islet beta cells in response to KCl and glucose. We observed both single transient and multi-stepwise increases in membrane FM1-43 fluorescence, suggesting single granule exocytosis as well as sequential and compound exocytosis, respectively. Confocal microscopy of nonpermeabilized cells shows that some of the exocytosed insulin granules labeled by the FM1-43 dye could also be labeled with insulin antibodies, suggesting prolonged openings of the fusion pores and slow dissolution of the granule core proteins on the membrane surface.  相似文献   

2.
Zenisek D  Steyer JA  Feldman ME  Almers W 《Neuron》2002,35(6):1085-1097
Perhaps synaptic vesicles can recycle so rapidly because they avoid complete exocytosis, and release transmitter through a fusion pore that opens transiently. This view emerges from imaging whole terminals where the fluorescent lipid FM1-43 seems unable to leave vesicles during transmitter release. Here we imaged single, FM1-43-stained synaptic vesicles by evanescent field fluorescence microscopy, and tracked the escape of dye from single vesicles by watching the increase in fluorescence after exocytosis. Dye left rapidly and completely during most or all exocytic events. We conclude that vesicles at this terminal allow lipid exchange soon after exocytosis, and lose their dye even if they connected with the plasma membrane only briefly. At the level of single vesicles, therefore, observations with FM1-43 provide no evidence that exocytosis of synaptic vesicles is incomplete.  相似文献   

3.
When a cell suffers a plasma membrane disruption, extracellular Ca2+ rapidly diffuses into its cytosol, triggering there local homotypic and exocytotic membrane fusion events. One role of this emergency exocytotic response is to promote cell survival: the internal membrane thus added to the plasma membrane acts as a reparative “patch.” Another, unexplored consequence of disruption-induced exocytosis is secretion. Many of the cells lining the gastrointestinal tract secrete mucus via a compound exocytotic mechanism, and these and other epithelial cell types lining the digestive tract are normally subject to plasma membrane disruption injury in vivo. Here we show that plasma membrane disruption triggers a potent mucus secretory response from stomach mucous cells wounded in vitro by shear stress or by laser irradiation. This disruption-induced secretory response is Ca2+ dependent, and coupled to cell resealing: disruption in the absence of Ca2+ does not trigger mucus release, but results instead in cell death due to failure to reseal. Ca2+-dependent, disruption-induced mucus secretion and resealing were also demonstrable in segments of intact rat large intestine. We propose that, in addition to promoting cell survival of membrane disruptions, disruption-induced exocytosis serves also the important protective function of liberating lubricating mucus at sites of mechanical wear and tear. This mode of mechanotransduction can, we propose, explain how lubrication in the gastrointestinal tract is rapidly and precisely adjusted to widely fluctuating, diet-dependent levels of mechanical stress.  相似文献   

4.
We studied whether regulated exocytosis affects the glutamate transporter density in cultured astrocytes, in which the expression of a fluorescently labeled excitatory amino acid transporter 2 (EAAT2-EGFP) predominantly labeled the plasma membrane. The addition of ionomycin that elevates cytosolic Ca2+ strongly increased the fluorescence of FM 4-64 membrane area dye, confirming the presence of regulated exocytosis in transfected astrocytes. However, concomitant with Ca2+-dependent FM 4-64 fluorescence increase, ionomycin induced a significant steady-state decrease in EAAT2-EGFP fluorescence. This is likely due to a secondary inner filter effect since,(i) in the absence of FM 4-64, ionomycin stimulation was ineffective in changing the EAAT2-EGFP fluorescence, and (ii) fluorescence changes in FM 4-64 and EAAT2-EGFP were inversely correlated. To test whether subcellular EAAT2-EGFP structures are translocated from the cytoplasm to the plasma membrane during ionomycin stimulation, EAAT2-EGFP fluorescence was monitored locally at the plasma membrane and a few microns away in the adjacent cytoplasm. Measurements revealed sites with an increase in EAAT2-EGFP plasma membrane fluorescence correlated with a fluorescence decrease beneath the plasma membrane, and sites with plasma membrane fluorescence decrease correlated with fluorescence increase within the adjacent cytoplasm. The sites of rapid translocation/retrieval of EAAT2-EGFP structures to/from the plasma membrane appeared to be distributed in a punctuate pattern around the cell perimeter. The density of EAAT2-EGFP was regulated in a Ca2+-dependent manner, since in the absence of extracellular Ca2+ local translocation/retrieval events were absent, revealing rapid surface density regulation of EAAT2 in astrocytes by regulated exo/endocytosis.  相似文献   

5.
We studied whether regulated exocytosis affects the glutamate transporter density in cultured astrocytes, in which the expression of a fluorescently labeled excitatory amino acid transporter 2 (EAAT2-EGFP) predominantly labeled the plasma membrane. The addition of ionomycin that elevates cytosolic Ca(2+) strongly increased the fluorescence of FM 4-64 membrane area dye, confirming the presence of regulated exocytosis in transfected astrocytes. However, concomitant with Ca(2+)-dependent FM 4-64 fluorescence increase, ionomycin induced a significant steady-state decrease in EAAT2-EGFP fluorescence. This is likely due to a secondary inner filter effect since,(i) in the absence of FM 4-64, ionomycin stimulation was ineffective in changing the EAAT2-EGFP fluorescence, and (ii) fluorescence changes in FM 4-64 and EAAT2-EGFP were inversely correlated. To test whether subcellular EAAT2-EGFP structures are translocated from the cytoplasm to the plasma membrane during ionomycin stimulation, EAAT2-EGFP fluorescence was monitored locally at the plasma membrane and a few microns away in the adjacent cytoplasm. Measurements revealed sites with an increase in EAAT2-EGFP plasma membrane fluorescence correlated with a fluorescence decrease beneath the plasma membrane, and sites with plasma membrane fluorescence decrease correlated with fluorescence increase within the adjacent cytoplasm. The sites of rapid translocation/retrieval of EAAT2-EGFP structures to/from the plasma membrane appeared to be distributed in a punctuate pattern around the cell perimeter. The density of EAAT2-EGFP was regulated in a Ca(2+)-dependent manner, since in the absence of extracellular Ca(2+) local translocation/retrieval events were absent, revealing rapid surface density regulation of EAAT2 in astrocytes by regulated exo/endocytosis.  相似文献   

6.
Sikdar SK  Kreft M  Pangrsic T  Grilc S  Zorec R 《FEBS letters》2005,579(29):6575-6580
We have explored the existence of fusion- and secretion-competent sites on the plasma membrane of peptide secreting rat pituitary melanotrophs at rest, and following stimulation with glutamate. We monitored changes in fluorescence of FM1-43, a styryl dye which labels plasma membrane. The results show spontaneous local increases in FM1-43 reporting changes in membrane surface area due to cumulative exocytosis. Addition of glutamate, further increased the occurrence of these events. Statistical analysis of local FM1-43 fluorescence changes suggests that this is due to the recruitment of inactive exocytotic domains and due to the stimulation of already active exocytotic domains.  相似文献   

7.
In response to physiological stimuli, neuroendocrine cells secrete neurotransmitters through a Ca(2+)-dependent fusion of secretory granules with the plasma membrane. We studied insertion of granules in bovine chromaffin cells using capacitance as a measure of plasma membrane area and fluorescence of a membrane marker FM1-43 as a measure of exocytosis. Intracellular dialysis with [Ca(2+)] (1.5-100 microM) evoked massive exocytosis that was sufficient to double plasma membrane area but did not swell cells. In principle, in the absence of endocytosis, the addition of granule membrane would be anticipated to produce similar increases in the capacitance and FM1-43 fluorescence responses. However, when endocytosis was minimal, the changes in capacitance were markedly larger than the corresponding changes in FM1-43 fluorescence. Moreover, the apparent differences between capacitance and FM1-43 fluorescence changes increased with larger exocytic responses, as more granules fused with the plasma membrane. In experiments in which exocytosis was suppressed, increasing membrane tension by osmotically induced cell swelling increased FM1-43 fluorescence, suggesting that FM1-43 fluorescence is sensitive to changes in the membrane tension. Thus, increasing membrane area through exocytosis does not swell chromaffin cells but may decrease membrane tension.  相似文献   

8.
Recruitment of individuals of the marine alga Ulva linza on to a suitable habitat involves the settlement of motile zoospores on to a substratum during which a preformed adhesive is secreted by vesicular exocytosis. The fluorescent styryl dye FM 1-43 and fluorescent Ca(2+) indicators were used to follow membrane cycling and changes in cytosolic Ca(2+) ([Ca(2+)](cyt)) associated with settlement. When swimming zoospores were exposed continuously to FM 1-43, the plasma membrane was preferentially labelled. During settlement, FM 1-43-labelled plasma membrane was rapidly internalized reflecting high membrane turnover. The internalized membrane was focused into a discrete region indicating targeting of membrane to an endosome-like compartment. Acetoxymethyl (AM)-ester derivatives were found to be unsuitable for monitoring [Ca(2+)](cyt) because the dyes were rapidly sequestered from the cytoplasm into sub-cellular compartments. [Ca(2+)](cyt) was, however, reliably measured using dextran-conjugated calcium indicators delivered into cells using a biolistic technique. Cells loaded with Oregon Green BAPTA-1 dextran (Invitrogen, Paisley, UK) showed diffuse cytosolic loading and reliably responded to imposed changes in [Ca(2+)](cyt). During settlement, zoospores exhibited both localized and diffuse increases in [Ca(2+)](cyt) implying a role for [Ca(2+)](cyt) in exocytosis of the adhesive.  相似文献   

9.
Charette SJ  Cosson P 《FEBS letters》2006,580(20):4923-4928
Exocytosis of late endocytic compartments in Dictyostelium has mostly been studied by live microscopy. Here we show that this exocytosis is accompanied by a complete fusion of late endosomes with the plasma membrane resulting in the transient formation of membrane microdomains that can be visualized by immunofluorescence in fixed cells. This permitted to demonstrate that fusion of late endocytic compartments with the cell surface does not occur in regions of the plasma membrane engaged in the formation of pseudopods, macropinosomes or phagosomes. Our results propose that exocytosis of late endosomes and actin-driven membrane remodeling are mutually exclusive processes.  相似文献   

10.
Disruption of the cell plasma membrane is a commonplace occurrence in many mechanically challenging, biological environments. 'Resealing' is the emergency response required for cell survival. Resealing is triggered by Ca2+ entering through the disruption; this causes vesicles present in cytoplasm underlying the disruption site to fuse rapidly with one another (homotypically) and also with the adjacent plasma membrane (heterotypically/exocytotically). The large vesicular products of homotypic fusion are added as a reparative 'patch' across the disruption, when its resealing requires membrane replacement. The simultaneous activation of the local cytoskeleton supports these membrane fusion events. Resealing is clearly a complex and dynamic cell adaptation, and, as we emphasize here, may be an evolutionarily primitive one that arose shortly after the ancestral eukaryote lost its protective cell wall.  相似文献   

11.
Transmitter exocytosis from the neuronal soma is evoked by brief trains of high frequency electrical activity and continues for several minutes. Here we studied how active vesicle transport towards the plasma membrane contributes to this slow phenomenon in serotonergic leech Retzius neurons, by combining electron microscopy, the kinetics of exocytosis obtained from FM1-43 dye fluorescence as vesicles fuse with the plasma membrane, and a diffusion equation incorporating the forces of local confinement and molecular motors. Electron micrographs of neurons at rest or after stimulation with 1 Hz trains showed cytoplasmic clusters of dense core vesicles at 1.5±0.2 and 3.7±0.3 µm distances from the plasma membrane, to which they were bound through microtubule bundles. By contrast, after 20 Hz stimulation vesicle clusters were apposed to the plasma membrane, suggesting that transport was induced by electrical stimulation. Consistently, 20 Hz stimulation of cultured neurons induced spotted FM1-43 fluorescence increases with one or two slow sigmoidal kinetics, suggesting exocytosis from an equal number of vesicle clusters. These fluorescence increases were prevented by colchicine, which suggested microtubule-dependent vesicle transport. Model fitting to the fluorescence kinetics predicted that 52–951 vesicles/cluster were transported along 0.60–6.18 µm distances at average 11–95 nms−1 velocities. The ATP cost per vesicle fused (0.4–72.0), calculated from the ratio of the ΔGprocess/ΔGATP, depended on the ratio of the traveling velocity and the number of vesicles in the cluster. Interestingly, the distance-dependence of the ATP cost per vesicle was bistable, with low energy values at 1.4 and 3.3 µm, similar to the average resting distances of the vesicle clusters, and a high energy barrier at 1.6–2.0 µm. Our study confirms that active vesicle transport is an intermediate step for somatic serotonin exocytosis by Retzius neurons and provides a quantitative method for analyzing similar phenomena in other cell types.  相似文献   

12.
P2X7 receptors (P2X7R) are extracellular ATP‐gated ion channels expressed in the immune effector cells that carry out critical protective responses during the early phases of microbial infection or acute tissue trauma. P2X7R‐positive cells include monocytes, macrophages, dendritic cells and T cells. Given its presence in all host and pathogen cell types, ATP can be readily released into extracellular compartments at local sites of tissue damage and microbial invasion. Thus, extracellular ATP and its target receptors on host effector cells can be considered as additional elements of the innate immune system. In this regard, stimulation of P2X7R rapidly triggers a key step of the inflammatory response: induction of NLRP3/caspase‐1 inflammasome signalling complexes that drive the proteolytic maturation and secretion of the proinflammatory cytokines interleukin‐1β (IL‐1β) and interleukin‐18 (IL‐18). IL‐1β (and IL‐18) lacks a signal sequence for compartmentation within the Golgi and classical secretory vesicles and the proIL‐1β precursor accumulates within the cytosol following translation on free ribosomes. Thus, ATP‐induced accumulation of the mature IL‐1β cytokine within extracellular compartments requires non‐classical mechanisms of export from the cytosolic compartment. Five proposed mechanisms include: (i) exocytosis of secretory lysosomes that accumulate cytosolic IL‐1β via undefined protein transporters; (ii) release of membrane‐delimited microvesicles derived from plasma membrane blebs formed by evaginationsof the surface membrane that entrap cytosolic IL‐β; (iii) release of membrane‐delimited exosomes secondary to the exocytosis of multivesicular bodies formed by invaginations of recycling endosomes that entrap cytosolic IL‐β; (iv) exocytosis of autophagosomes or autophagolysosomes that accumulate cytosolic IL‐1β via entrapment during formation of the initial autophagic isolation membrane or omegasome and (v) direct release of cytosolic IL‐1β secondary to regulated cell death by pyroptosis or necroptosis. These mechanisms are not mutually exclusive and may represent engagement of parallel or intersecting membrane trafficking responses to P2X7R activation.  相似文献   

13.
The canonical view of the ultimate steps of HIV-1 replication is that virus assembly and budding are taking place at the plasma membrane of infected cells. Surprisingly, recent studies revealed that these steps also occur on endosomal membranes in the interior of infected cells, such as macrophages. This prompted us to revisit the site of HIV-1 assembly in human epithelial-like cells and in infected human T-lymphoblastic cells. To address this question, we investigated the intracellular location of the major viral structural components of HIV-1, namely Gag, Env and the genomic RNA. Using a sub-cellular fractionation method, as well as immuno-confocal and electron microscopy, we show that Gag, the Env glycoproteins and the genomic RNA accumulate in late endosomes that contain infectious HIV-1 particles. In epithelial-like 293T cells, HIV-1 assembles and buds both at the plasma membrane and in endosomes, while in chronically infected human T lymphocytes, viral assembly mostly occurs within the cell where large amounts of infectious virions accumulate in endosomal compartments. In addition, HIV-1 release could be enhanced by ionomycin, a drug stimulating calcium-dependent exocytosis. These results favour the view that newly made Gag molecules associate with the genomic RNA in the cytosol, then viral core complexes can be targeted to late endosomes together with Env, where infectious HIV-1 are made and subsequently released by exocytosis.  相似文献   

14.
15.
The membrane dye FM 1-43 has frequently been used to quantify exocytosis in neurons. In epithelia, intense lateral intracellular space staining and fluctuations in baseline labeling produced inconsistent results. Membrane retrieved in the presence of FM 1-43 retains the dye, however, and cells that undergo compensatory endocytosis during and following evoked exocytosis contain punctate, fluorescent particles after washout of external stain. As an alternative measure of trafficking, we quantified the fluorescent puncta retained after dye washout and tested our method on both coverslip-grown cell clusters and filter-grown intact monolayers. Images for analysis were acquired using serial sectioning with either epifluorescence or confocal microscopy. Tests with an intestinal goblet cell line that exhibits basal and ATP-stimulated granule trafficking confirmed that 1), the algorithm identified the same number of internalized particles with either epifluorescence or confocal microscopy acquired images; 2), low density clusters exhibited significantly more internalized particles per cell than either filter-grown monolayers or high density clusters; 3), ATP stimulation significantly increased the number of internalized particles in all preparations; and 4), the number of particles internalized was comparable to capacitance measurements of exocytosis. This method provides a single technique for quantifying membrane trafficking in both monolayers and unpolarized cells.  相似文献   

16.
The ability to measure the kinetics of vesicle release can help provide insight into some of the basics of neurotransmission. Here we used real-time imaging of vesicles labeled with FM dye to monitor the rate of presynaptic vesicle release. FM4-64 is a red fluorescent amphiphilic styryl dye that embeds into the membranes of synaptic vesicles as endocytosis is stimulated. Lipophilic interactions cause the dye to greatly increase in fluorescence, thus emitting a bright signal when associated with vesicles and a nominal one when in the extracellular fluid. After a wash step is used to help remove external dye within the plasma membrane, the remaining FM is concentrated within the vesicles and is then expelled when exocytosis is induced by another round of electrical stimulation. The rate of vesicles release is measured from the resulting decrease in fluorescence. Since FM dye can be applied external and transiently, it is a useful tool for determining rates of exocytosis in neuronal cultures, especially when comparing the rates between transfected synapses and neighboring control boutons.  相似文献   

17.
Rho GTPases regulate the actin cytoskeleton, exocytosis, endocytosis, and other signaling cascades. Rhos are subdivided into four subfamilies designated Rho, Racs, Cdc42, and a plant-specific group designated RACs/Rops. This research demonstrates that ectopic expression of a constitutive active Arabidopsis RAC, AtRAC10, disrupts actin cytoskeleton organization and membrane cycling. We created transgenic plants expressing either wild-type or constitutive active AtRAC10 fused to the green fluorescent protein. The activated AtRAC10 induced deformation of root hairs and leaf epidermal cells and was primarily localized in Triton X-100-insoluble fractions of the plasma membrane. Actin cytoskeleton reorganization was revealed by creating double transgenic plants expressing activated AtRAC10 and the actin marker YFP-Talin. Plants were further analyzed by membrane staining with N-[3-triethylammoniumpropyl]-4-[p-diethylaminophenylhexatrienyl] pyridinium dibromide (FM4-64) under different treatments, including the protein trafficking inhibitor brefeldin A or the actin-depolymeryzing agents latrunculin-B (Lat-B) and cytochalasin-D (CD). After drug treatments, activated AtRAC10 did not accumulate in brefeldin A compartments, but rather reduced their number and colocalized with FM4-64-labeled membranes in large intracellular vesicles. Furthermore, endocytosis was compromised in root hairs of activated AtRAC10 transgenic plants. FM4-64 was endocytosed in nontransgenic root hairs treated with the actin-stabilizing drug jasplakinolide. These findings suggest complex regulation of membrane cycling by plant RACs.  相似文献   

18.
Although exocytosis in fungal cells takes place at hyphal tips, there also seems a line of circumstantial evidence suggesting the occurrence of exocytosis at other sites of cells, such as septa. To investigate whether exocytosis takes place at fungal septa, we monitored dynamics of EGFP‐fused α‐amylase (AmyB–EGFP), the representative secretory enzyme of the filamentous fungus Aspergillus oryzae. We found that AmyB–EGFP accumulates in Spitzenkörper at hyphal tips as well as septal periplasm between the plasma membrane and cell walls. The septal accumulation of AmyB–EGFP was a rapid process, and required microtubules but not F‐actin. Thus, this process is independent of exocytosis at hyphal tips that requires both microtubules and F‐actin. In addition, fluorescence recovery after photobleaching (FRAP) analysis of EGFP‐fused AoSnc1 revealed that secretory vesicles constitutively fuse with the septal plasma membrane. These results demonstrated that exocytosis takes place at septa in addition to hyphal tips. Analysis of two plasma membrane transporters, AoUapC and AoGap1, revealed that they preferentially accumulate at septa and the lateral plasma membrane with no clear accumulation at apical Spitzenkörper, suggesting that non‐tip directed exocytosis is important for delivery of these proteins.  相似文献   

19.
The inhibitor of Rho-kinase Y-27632 induces non-secretory exocytosis in PC12 cells. The influence of this compound on central synapses remains uninvestigated. We showed that Y-27632 at the concentration 100 jtM led to spontaneous [14C]glutamate release in synaptosomes, which was not accompanied by plasma membrane depolarization. Membrane potential was registered by fluorescent dye DiSC3(5). Y27632 induced an increase of acridine orange fluorescence, exercising no influence over fluorescence of FM2-10 dye. These results suggest that Rho-kinase inhibition decreases pH gradient of synaptic vesicles not inducing exocytosis. Dissipation of the gradient leads to leakage of neurotransmitters to cytosol pumping them out by plasma membrane transporters. Our results show the involvement of Rho-dependent branch of intracellular signaling in regulation of pH gradient in synaptic vesicles.  相似文献   

20.
We investigated the behaviour of organelles stained with FM1-43 (putative endosomes) and/or LysoTracker Red (LTred; acidic compartments) and of the endoplasmic reticulum (ER) during healing of puncture and UV-induced wounds in internodal cells of Nitella flexilis and Chara corallina. Immediately after puncture, wounds were passively sealed with a plug of solid vacuolar inclusions, onto which a bipartite wound wall was actively deposited. The outer, callose-containing amorphous layer consisted of remnants of FM1-43- and LTred-labelled organelles, ER cisternae and polysaccharide-containing secretory vesicles, which became deposited in the absence of membrane retrieval (compound exocytosis). During formation of the inner cellulosic layer, exocytosis of secretory vesicles with the newly formed plasma membrane is coupled to endocytosis via coated vesicles. Migration of FM1-43- and LTred-stained organelles, ER and secretory vesicles towards the cell cortex and deposition of a bipartite wound wall could also be induced by spot-like irradiation with ultraviolet light. Cytochalasin D reversibly inhibited the accumulation and deposition of organelles. Our study indicates that active actin-dependent deposition of putative recycling endosomes is required for wound healing (plasma membrane repair) and supports the hypothesis that deposition of ER cisternae helps to restore wounding-disturbed Ca(2+) metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号