首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Long-term growth inhibition, arrest in G(1) phase and reduced activity of both cyclin D1-Cdk4 and cyclin E-Cdk2 are elicited by progestin treatment of breast cancer cells in culture. Decreased cyclin expression, induction of p18(INK4c) and increased association of the CDK inhibitors p21(WAF1/Cip1) and p27(Kip1) with cyclin E-Cdk2 have been implicated in these responses. To determine the role of decreased cyclin expression, T-47D human breast cancer cells constitutively expressing cyclin D1 or cyclin E were treated with the progestin ORG 2058. Overexpression of cyclin E had only a modest effect on growth inhibition. Although cyclin E expression was maintained during progestin treatment, cyclin E-Cdk2 activity decreased by approximately 60%. This was accompanied by p27(Kip1) association with cyclin E-Cdk2, indicating that both cyclin E down-regulation and p27(Kip1) recruitment contribute to the decrease in activity. In contrast, overexpression of cyclin D1 induced progestin resistance and cell proliferation continued despite decreased cyclin E-Cdk2 activity. Progestin treatment of cyclin D1-overexpressing cells was associated with increased p27(Kip1) association with cyclin E-Cdk2. Thus the ability of cyclin D1 to confer progestin resistance does not depend on sequestration of p27(Kip1) away from cyclin E-Cdk2, providing evidence for a critical function of cyclin D1 other than as a high-capacity "sink" for p27(Kip1). These data indicate that regulation of cyclin D1 is a critical element of progestin inhibition in breast cancer cells and suggest that breast cancers overexpressing cyclin D1 may respond poorly to progestin therapy.  相似文献   

2.
BACKGROUND: The ability of cyclin-dependent kinases (CDKs) to promote cell proliferation is opposed by cyclin-dependent kinase inhibitors (CKIs), proteins that bind tightly to cyclin-CDK complexes and block the phosphorylation of exogenous substrates. Mice with targeted CKI gene deletions have only subtle proliferative abnormalities, however, and cells prepared from these mice seem remarkably normal when grown in vitro. One explanation may be the operation of compensatory pathways that control CDK activity and cell proliferation when normal pathways are inactivated. We have used mice lacking the CKIs p21(Cip1) and p27(Kip1) to investigate this issue, specifically with respect to CDK regulation by mitogens. RESULTS: We show that p27 is the major inhibitor of Cdk2 activity in mitogen-starved wild-type murine embryonic fibroblasts (MEFs). Nevertheless, inactivation of the cyclin E-Cdk2 complex in response to mitogen starvation occurs normally in MEFs that have a homozygous deletion of the p27 gene. Moreover, CDK regulation by mitogens is also not affected by the absence of both p27 and p21. A titratable Cdk2 inhibitor compensates for the absence of both CKIs, and we identify this inhibitor as p130, a protein related to the retinoblastoma gene product Rb. Thus, cyclin E-Cdk2 kinase activity cannot be inhibited by mitogen starvation of MEFs that lack both p27 and p130. In addition, cell types that naturally express low amounts of p130, such as T lymphocytes, are completely dependent on p27 for regulation of the cyclin E-Cdk2 complex by mitogens. CONCLUSIONS: Inhibition of Cdk2 activity in mitogen-starved fibroblasts is usually performed by the CKI p27, and to a minor extent by p21. Remarkably p130, a protein in the Rb family that is not related to either p21 or p27, will directly substitute for the CKIs and restore normal CDK regulation by mitogens in cells lacking both p27 and p21. This compensatory pathway may be important in settings in which CKIs are not expressed at standard levels, as is the case in many human tumors.  相似文献   

3.
4.
The INK4 family of cyclin-dependent kinase (CDK) inhibitors negatively regulates cyclin D-dependent CDK4 and CDK6 and induces the growth-suppressive function of Rb family proteins. Mutations in the Cdk4 gene conferring INK4 resistance are associated with familial and sporadic melanoma in humans and result in a wide spectrum of tumors in mice, suggesting that INK4 is a major regulator of CDK4. Mice lacking the Cdk4 gene exhibit various defects in many organs associated with hypocellularity, whereas loss of the p18(Ink4c) gene results in widespread hyperplasia and organomegaly. To genetically test the notion that the function of INK4 is dependent on CDK4, we generated p18; Cdk4 double-mutant mice and examined the organs and tissues which developed abnormalities when either gene is deleted. We show here that, in all organs we have examined, including pituitary, testis, pancreas, kidney, and adrenal gland, hyperproliferative phenotypes associated with p18 loss were canceled. The double-mutant mice exhibited phenotypes very close to or indistinguishable from that of Cdk4 single-mutant mice. Mice lacking p27(Kip1) develop widespread hyperplasia and organomegaly similar to those developed by p18-deficient mice. The p27; Cdk4 double-mutant mice, however, displayed phenotypes intermediate between those of p27 and Cdk4 single-mutant mice. These results provide genetic evidence that in mice p18(Ink4c) and p27(Kip1) mediate the transduction of different cell growth and proliferation signals to CDK4 and that p18(Ink4c) is functionally dependent on CDK4.  相似文献   

5.
Estrogens induce proliferation of estrogen receptor (ER)-positive MCF-7 breast cancer cells by stimulating G(1)/S transition associated with increased cyclin D1 expression, activation of cyclin-dependent kinases (Cdks), and phosphorylation of the retinoblastoma protein (pRb). We have utilized blockade of cyclin D1-Cdk4 complex formation through adenovirus-mediated expression of p16(INK4a) to demonstrate that estrogen regulates Cdk inhibitor expression and expression of the Cdk-activating phosphatase Cdc25A independent of cyclin D1-Cdk4 function and cell cycle progression. Expression of p16(INK4a) inhibited G(1)/S transition induced in MCF-7 cells by 17-beta-estradiol (E(2)) with associated inhibition of both Cdk4- and Cdk2-associated kinase activities. Inhibition of Cdk2 activity was associated with delayed removal of Cdk-inhibitory activity in early G(1) and decreased cyclin A expression. Cdk-inhibitory activity and expression of both p21(Cip1) and p27(Kip1) was decreased, however, in both control and p16(INK4a)-expressing cells 20 h after estrogen treatment. Expression of Cdc25A mRNA and protein was induced by E(2) in control and p16(INK4a)-expressing MCF-7 cells; however, functional activity of Cdc25A was inhibited in cells expressing p16(INK4a). Inhibition of Cdc25A activity in p16(INK4a)-expressing cells was associated with depressed Cdk2 activity and was reversed in vivo and in vitro by active Cdk2. Transfection of MCF-7 cells with a dominant-negative Cdk2 construct inhibited the E(2)-dependent activation of ectopic Cdc25A. Supporting a role for Cdc25A in estrogen action, antisense CDC25A oligonucleotides inhibited estrogen-induced Cdk2 activation and DNA synthesis. In addition, inactive cyclin E-Cdk2 complexes from p16(INK4a)-expressing, estrogen-treated cells were activated in vitro by treatment with recombinant Cdc25A and in vivo in cells overexpressing Cdc25A. The results demonstrate that functional association of cyclin D1-Cdk4 complexes is required for Cdk2 activation in MCF-7 cells and that Cdk2 activity is, in turn, required for the in vivo activation of Cdc25A. These studies establish Cdc25A as a growth-promoting target of estrogen action and further indicate that estrogens independently regulate multiple components of the cell cycle machinery, including expression of p21(Cip1) and p27(Kip1).  相似文献   

6.
Our studies address questions pertaining to the regulation of D cyclin-cdk4 activity, and the following results were obtained. Conditions that increased the abundance of the D cyclins also increased the abundance of enzymatically active D cyclin-cdk4 complexes in mouse embryo fibroblasts (MEFs) lacking both p27(Kip1) and p21(Cip1) (p27/p21(-/-)). Such conditions included ectopic expression of cyclin D1 and inhibition of D cyclin degradation by the proteasome inhibitor MG132. However, as determined by treatment of wild-type MEFs with MG132, maximal accumulation of D cyclin-cdk4 complexes required p27(Kip1) and p21(Cip1) and coincided with the formation of inactive D cyclin-cdk4-p27(Kip1) or -p21(Cip1) complexes. p27(Kip1) or p21(Cip1) also increased the abundance of D cyclin-cdk4 complexes and reduced amounts of cdk4 activity when ectopically expressed in p27/p21(-/-) MEFs. Lastly, increases in the stability of the D cyclins accounted for their greater abundance in wild-type MEFs than in p27/p21(-/-) MEFs. We conclude that (i) D cyclin-cdk4 complexes are formed and become active in the absence of p27(Kip1) and p21(Cip1) and (ii) p27(Kip1) and p21(Cip1) maximize the accumulation but inhibit the activity of D cyclin-cdk4 complexes. We suggest that D cyclin-cdk4 complexes are more stable when bound to p27(Kip1) or p21(Cip1) and that formation of ternary complexes also stabilizes the D cyclins.  相似文献   

7.
Mechanisms of Cyclin-Dependent Kinase Inactivation by Progestins   总被引:6,自引:2,他引:6       下载免费PDF全文
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. In breast cancer cells the predominant effect of synthetic progestins is long-term growth inhibition and arrest in G1 phase. Progestin-mediated growth arrest of T-47D breast cancer cells was preceded by inhibition of cyclin D1-Cdk4, cyclin D3-Cdk4, and cyclin E-Cdk2 kinase activities in vitro and reduced phosphorylation of pRB and p107. This was accompanied by decreases in the expression of cyclins D1, D3, and E, decreased abundance of cyclin D1- and cyclin D3-Cdk4 complexes, increased association of the cyclin-dependent kinase (CDK) inhibitor p27 with the remaining Cdk4 complexes, and changes in the molecular masses and compositions of cyclin E complexes. In control cells cyclin E eluted from Superdex 200 as two peaks of ~120 and ~200 kDa, with the 120-kDa peak displaying greater cyclin E-associated kinase activity. Following progestin treatment, almost all of the cyclin E was in the 200-kDa, low-activity form, which was associated with the CDK inhibitors p21 and p27; this change preceded the inhibition of cell cycle progression. These data suggest preferential formation of this higher-molecular-weight, CDK inhibitor-bound form and a reduced number of cyclin E-Cdk2 complexes as mechanisms for the decreased cyclin E-associated kinase activity following progestin treatment. Ectopic expression of cyclin D1 in progestin-inhibited cells led to the reappearance of the 120-kDa active form of cyclin E-Cdk2 preceding the resumption of cell cycle progression. Thus, decreased cyclin expression and consequent increased CDK inhibitor association are likely to mediate the decreases in CDK activity accompanying progestin-mediated growth inhibition.  相似文献   

8.
To ensure proper timing of the G1-S transition in the cell cycle, the cyclin E-Cdk2 complex, which is responsible for the initiation of DNA replication, is restrained by the p21(Cip1)/p27(Kip1)/p57(Kip2) family of CDK (cyclin-dependent kinase) inhibitors in humans and by the related p27(Xic1) protein in Xenopus. Activation of cyclin E-Cdk2 is linked to the ubiquitination of human p27(Kip1) or Xenopus p27(Xic1) by SCF (for Skp1-Cullin-F-box protein) ubiquitin ligases. For human p27(Kip1), ubiquitination requires direct phosphorylation by cyclin E-Cdk2. We show here that Xic1 ubiquitination does not require phosphorylation by cyclin E-Cdk2, but it does require nuclear accumulation of the Xic1-cyclin E-Cdk2 complex and recruitment of this complex to chromatin by the origin-recognition complex together with Cdc6 replication preinitiation factors; it also requires an activation step necessitating cyclin E-Cdk2-kinase and SCF ubiquitin-ligase activity, and additional factors associated with mini-chromosome maintenance proteins, including the inactivation of geminin. Components of the SCF ubiquitin-ligase complex, including Skp1 and Cul1, are also recruited to chromatin through cyclin E-Cdk2 and the preinitiation complex. Thus, activation of the cyclin E-Cdk2 kinase and ubiquitin-dependent destruction of its inhibitor are spatially constrained to the site of a properly assembled preinitiation complex.  相似文献   

9.
Little is known about cell-cycle checkpoint activation by oxidative stress in mammalian cells. The effects of hyperoxia on cell-cycle progression were investigated in asynchronous human T47D-H3 cells, which contain mutated p53 and fail to arrest at G1/S in response to DNA damage. Hyperoxic exposure (95% O(2), 40-64 h) induced an S-phase arrest associated with acute inhibition of Cdk2 activity and DNA synthesis. In contrast, exit from G2/M was not inhibited in these cells. After 40 h of hyperoxia, these effects were partially reversible during recovery under normoxic conditions. The inhibition of Cdk2 activity was not due to degradation of Cdk2, cyclin E or A, nor impairment of Cdk2 complex formation with cyclin A or E and p21(Cip1). The loss of Cdk2 activity occurred in the absence of induction and recruitment of cdk inhibitor p21(Cip1) or p27(Kip1) in cyclin A/Cdk2 or cyclin E/Cdk2 complexes. In contrast, Cdk2 inhibition was associated with increased Cdk2-Tyr15 phosphorylation, increased E2F-1 recruitment, and decreased PCNA contents in Cdk2 complexes. The latter results indicate a p21(Cip1)/p27(Kip1)-independent mechanism of S-phase checkpoint activation in the hyperoxic T47D cell model investigated.  相似文献   

10.
11.
Exposure of hematopoietic cells to DNA-damaging agents induces p53-independent cell cycle arrest at a G(1) checkpoint. Previously, we have shown that this growth arrest can be overridden by cytokine growth factors, such as erythropoietin or interleukin-3, through activation of a phosphatidylinositol 3-kinase (PI 3-kinase)/Akt-dependent signaling pathway. Here, we show that gamma-irradiated murine myeloid 32D cells arrest in G(1) with active cyclin D-cyclin-dependent kinase 4 (Cdk4) but with inactive cyclin E-Cdk2 kinases. The arrest was associated with elevated levels of the Cdk inhibitors p21(Cip1) and p27(Kip1), yet neither was associated with Cdk2. Instead, irradiation-induced inhibition of cyclin E-Cdk2 correlated with absence of the activating threonine-160 phosphorylation on Cdk2. Cytokine treatment of irradiated cells induced Cdk2 phosphorylation and activation, and cells entered into S phase despite sustained high-level expression of p21 and p27. Notably, the PI 3-kinase inhibitor, LY294002, completely blocked cytokine-induced Cdk2 activation and cell growth in irradiated 32D cells but not in nonirradiated cells. Together, these findings demonstrate a novel mechanism underlying the DNA damage-induced G(1) arrest of hematopoietic cells, that is, inhibition of Cdk2 phosphorylation and activation. These observations link PI 3-kinase signaling pathways with the regulation of Cdk2 activity.  相似文献   

12.
Decreased expression of the cyclin-dependent kinase (CDK) inhibitor p27(Kip1) is common in breast cancer and is associated with poor prognosis. p27 is also an important mediator of steroidal regulation of cell cycle progression. We have therefore investigated the role of p27 in mammary epithelial cell proliferation. Examination of the two major functions of p27, assembly of cyclin D1-Cdk4 complexes and inhibition of Cdk2 activity, revealed that cyclin D1-Cdk4 complex formation was not impaired in p27-/- mammary epithelial cells in primary culture. However, cyclin E-Cdk2 activity was increased approximately 3-fold, indicating that the CDK inhibitory function of p27 is important in mammary epithelial cells. Increased epithelial DNA synthesis was observed during pregnancy in p27-/- mammary gland transplants, but this was paralleled by increased apoptosis. During pregnancy and at parturition, development and differentiation of p27+/+ and p27-/- mammary tissue were indistinguishable. These results demonstrate a role for p27 in both the proliferation and survival of mammary epithelial cells. However, the absence of morphological and cellular defects in p27-/- mammary tissue during pregnancy raises the possibility that loss of p27 in breast cancer may not confer an overall growth advantage unless apoptosis is also impaired.  相似文献   

13.
There is increasing evidence that p21(Cip1) and p27(Kip1) are requisite positive regulators of cyclin D1.CDK4 assembly and nuclear accumulation. Both Cip and Kip proteins can promote nuclear accumulation of cyclin D1, but the underlying mechanism has not been elucidated. We now provide evidence that p21(Cip1) promotes the nuclear accumulation of cyclin D1 complexes via inhibition of cyclin D1 nuclear export. In vivo, we demonstrate that p21(Cip1) can inhibit glycogen synthase kinase 3 beta-triggered cyclin D1 nuclear export and phosphorylation-dependent nucleocytoplasmic shuttling. Furthermore, we find that cyclin D1 nuclear accumulation in p21/p27 null cells can be restored through inhibition of CRM1-dependent nuclear export. The ability of p21(Cip1) to inhibit cyclin D1 nuclear export correlates with its ability to bind to Thr-286-phosphorylated cyclin D1 and thereby prevents cyclin D1.CRM1 association.  相似文献   

14.
The D-type cyclins and their major kinase partners CDK4 and CDK6 regulate G0-G1-S progression by contributing to the phosphorylation and inactivation of the retinoblastoma gene product, pRB. Assembly of active cyclin D-CDK complexes in response to mitogenic signals is negatively regulated by INK4 family members. Here we show that although all four INK4 proteins associate with CDK4 and CDK6 in vitro, only p16(INK4a) can form stable, binary complexes with both CDK4 and CDK6 in proliferating cells. The other INK4 family members form stable complexes with CDK6 but associate only transiently with CDK4. Conversely, CDK4 stably associates with both p21(CIP1) and p27(KIP1) in cyclin-containing complexes, suggesting that CDK4 is in equilibrium between INK4 and p21(CIP1)- or p27(KIP1)-bound states. In agreement with this hypothesis, overexpression of p21(CIP1) in 293 cells, where CDK4 is bound to p16(INK4a), stimulates the formation of ternary cyclin D-CDK4-p21(CIP1) complexes. These data suggest that members of the p21 family of proteins promote the association of D-type cyclins with CDKs by counteracting the effects of INK4 molecules.  相似文献   

15.
p27 mediates Cdk2 inhibition and is also found in cyclin D1-Cdk4 complexes. The present data support a role for p27 in the assembly of D-type cyclin-Cdk complexes and indicate that both cyclin D1-Cdk4-p27 assembly and kinase activation are regulated by p27 phosphorylation. Prior work showed that p27 can be phosphorylated by protein kinase B/Akt (PKB/Akt) at T157 and T198. Here we show that PKB activation and the appearance of p27pT157 and p27pT198 precede p27-cyclin D1-Cdk4 assembly in early G1. PI3K/PKB inhibition rapidly reduced p27pT157 and p27pT198 and dissociated cellular p27-cyclin D1-Cdk4. Mutant p27 allele products lacking phosphorylation at T157 and T198 bound poorly to cellular cyclin D1 and Cdk4. Cellular p27pT157 and p27pT198 coprecipitated with Cdk4 but were not detected in Cdk2 complexes. The addition of p27 to recombinant cyclin D1 and Cdk4 led to cyclin D1-Cdk4-p27 complex formation in vitro. p27 phosphorylation by PKB increased p27-cyclin D1-Cdk4 assembly in vitro but yielded inactive Cdk4. In contrast, Src pretreatment of p27 did not affect p27-cyclin D1-Cdk4 complex formation. However, Src treatment led to tyrosine phosphorylation of p27 and catalytic activation of assembled cyclin D1-Cdk4-p27 complexes. Thus, while PKB-dependent p27 phosphorylation appears to increase cyclin D1-Cdk4-p27 assembly or stabilize these complexes in vitro, cyclin D1-Cdk4-p27 activation requires the tyrosine phosphorylation of p27. Constitutive activation of PKB and Abl or Src family kinases in cancers would drive p27 phosphorylation, increase cyclin D1-Cdk4 assembly and activation, and reduce the cyclin E-Cdk2 inhibitory function of p27. Combined therapy with both Src and PI3K/PKB inhibitors may reverse this process.  相似文献   

16.
Overexpression of the ErbB2 receptor, a major component of the ErbB receptor signaling network, contributes to the development of a number of human cancers. ErbB2 presents itself, therefore, as a target for antibody-mediated therapies. In this respect, anti-ErbB2 monoclonal antibody 4D5 specifically inhibits the growth of tumor cells overexpressing ErbB2. We have analyzed the effect of 4D5-mediated ErbB2 inhibition on the cell cycle of the breast tumor cell line BT474. 4D5 treatment of BT474 cells resulted in a G(1) arrest, preceded by rapid dephosphorylation of ErbB2, inhibition of cytoplasmic signal transduction pathways, accumulation of the cyclin-dependent kinase inhibitor p27(Kip1), and inactivation of cyclin-Cdk2 complexes. Time courses demonstrated that 4D5 treatment redirects p27(Kip1) onto Cdk2 complexes, an event preceding increased p27(Kip1) expression; this correlates with the downregulation of c-Myc and D-type cyclins (proteins involved in p27(Kip1) sequestration) and the loss of p27(Kip1) from Cdk4 complexes. Similar events were observed in ErbB2-overexpressing SKBR3 cells, which exhibited reduced proliferation in response to 4D5 treatment. Here, p27(Kip1) redistribution resulted in partial Cdk2 inactivation, consistent with a G1 accumulation. Moreover, p27(Kip1) protein levels remained constant. Antisense-mediated inhibition of p27(Kip1) expression in 4D5-treated BT474 cells further demonstrated that in the absence of p27(Kip1) accumulation, p27(Kip1) redirection onto Cdk2 complexes is sufficient to inactivate Cdk2 and establish the G(1) block. These data suggest that ErbB2 overexpression leads to potentiation of cyclin E-Cdk2 activity through regulation of p27(Kip1) sequestration proteins, thus deregulating the G(1)/S transition. Moreover, through comparison with an ErbB2-overexpressing cell line insensitive to 4D5 treatment, we demonstrate the specificity of these cell cycle events and show that ErbB2 overexpression alone is insufficient to determine the cellular response to receptor inhibition.  相似文献   

17.
Progression through the early G(1) phase of the cell cycle requires mitogenic stimulation, which ultimately leads to the activation of cyclin-dependent kinases 4 and 6 (Cdk4/6). Cdk4/6 activity is promoted by D-type cyclins and opposed by Cdk inhibitor proteins. Loss of c-myc proto-oncogene function results in a defect in the activation of Cdk4/6. c-myc(-/-) cells express elevated levels of the Cdk inhibitor p27(Kip1) and reduced levels of Cdk7, the catalytic subunit of Cdk-activating kinase. We show here that in normal (c-myc(+/+)) cells, the majority of cyclin D-Cdk4/6 complexes are assembled with p27 and remain inactive during cell cycle progression; their function is presumably to sequester p27 from Cdk2 complexes. A small fraction of Cdk4/6 protein was found in lower molecular mass catalytically active complexes. Conditional overexpression of p27 in c-myc(+/+) cells caused inhibition of Cdk4/6 activity and elicited defects in G(0)-to-S phase progression very similar to those seen in c-myc(-/-) cells. Overexpression of cyclin D1 in c-myc(-/-) cells rescued the defect in Cdk4/6 activity, indicating that the limiting factor is the number of cyclin D-Cdk4/6 complexes. Cdk-activating kinase did not rescue Cdk4/6 activity. We propose that the defect in Cdk4/6 activity in c-myc(-/-) cells is caused by the elevated levels of p27, which convert the low abundance activable cyclin D-Cdk4/6 complexes into unactivable complexes containing higher stoichiometries of p27. These observations establish p27 as a physiologically relevant regulator of cyclin D-Cdk4/6 activity as well as mechanistically a target of c-Myc action and provide a model by which c-Myc influences the early-to-mid G(1) phase transition.  相似文献   

18.
Transforming growth factor beta (TGF-beta) induces G(1) arrest in susceptible cells by multiple mechanisms that inhibit the G(1) cyclin-dependent kinases (Cdks), including Cdk2, Cdk4, and Cdk6. TGF-beta treatment of early passage finite lifespan human mammary epithelial cells (HMECs) led to an accumulation of p27(Kip1) in cyclin E1-Cdk2 complexes and kinase inhibition. The requirement for p27 in the G(1) arrest by TGF-beta was assessed by transfection of antisense p27 (ASp27) oligonucleotides into TGF-beta-treated HMECs. Despite a reduction in total and cyclin E-Cdk2 bound p27 after ASp27 transfection, HMECs remained arrested in the G(1) phase. Maintenance of the G(1) arrest was accompanied by increased association of the Cdk inhibitor p21(WAF-1/Cip-1) and the retinoblastoma family member p130(Rb2) in cyclin E1-Cdk2 complexes along with kinase inhibition. In contrast to the findings in HMECs, p27 was essential for G(1) arrest by TGF-beta in two tumor-derived lines. ASp27 transfection into two TGF-beta-responsive, cancer-derived lines was not associated with increased compensatory binding of p21 and p130 to cyclin E1-Cdk2, and these cell lines failed to maintain G(1) arrest despite the continued presence of TGF-beta. Progressive cell cycle deregulation leading to impaired checkpoint controls during malignant tumor progression may alter the role of p27 from a redundant to an essential inhibitor of G(1)-to-S phase progression.  相似文献   

19.
20.
p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2   总被引:7,自引:0,他引:7  
Chu I  Sun J  Arnaout A  Kahn H  Hanna W  Narod S  Sun P  Tan CK  Hengst L  Slingerland J 《Cell》2007,128(2):281-294
The kinase inhibitor p27Kip1 regulates the G1 cell cycle phase. Here, we present data indicating that the oncogenic kinase Src regulates p27 stability through phosphorylation of p27 at tyrosine 74 and tyrosine 88. Src inhibitors increase cellular p27 stability, and Src overexpression accelerates p27 proteolysis. Src-phosphorylated p27 is shown to inhibit cyclin E-Cdk2 poorly in vitro, and Src transfection reduces p27-cyclin E-Cdk2 complexes. Our data indicate that phosphorylation by Src impairs the Cdk2 inhibitory action of p27 and reduces its steady-state binding to cyclin E-Cdk2 to facilitate cyclin E-Cdk2-dependent p27 proteolysis. Furthermore, we find that Src-activated breast cancer lines show reduced p27 and observe a correlation between Src activation and reduced nuclear p27 in 482 primary human breast cancers. Importantly, we report that in tamoxifen-resistant breast cancer cell lines, Src inhibition can increase p27 levels and restore tamoxifen sensitivity. These data provide a new rationale for Src inhibitors in cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号