首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amino-terminal and carboxy-terminal domains of inwardly rectifying potassium channel (Kir) subunits are both intracellular. A direct physical interaction between these two domains is involved in the response of Kir channels to regulatory factors such as G-proteins, nucleotides and intracellular pH. We have previously mapped the region within the N-terminal domain of Kir6.2 that interacts with the C-terminus. In this study we use a similar in vitro protein-protein interaction assay to map the regions within the C-terminus which interact with the N-terminus. We find that multiple interaction domains exist within the C-terminus: CID1 (amino acids (aa) 279-323), CID2 (aa 214-222) and CID3 (aa 170-204). These domains correlate with regions previously identified as making important contributions to Kir channel assembly and function. The highly conserved nature of the C-terminus suggests that a similar association with the N-terminus may be a feature common to all members of the Kir family of potassium channels, and that it may be involved in gating of Kir channels by intracellular ligands.  相似文献   

2.
ATP-sensitive potassium (K(ATP)) channels couple cell metabolism to electrical activity by regulating K(+) fluxes across the plasma membrane. Channel closure is facilitated by ATP, which binds to the pore-forming subunit (Kir6.2). Conversely, channel opening is potentiated by phosphoinositol bisphosphate (PIP(2)), which binds to Kir6.2 and reduces channel inhibition by ATP. Here, we use homology modelling and ligand docking to identify the PIP(2)-binding site on Kir6.2. The model is consistent with a large amount of functional data and was further tested by mutagenesis. The fatty acyl tails of PIP(2) lie within the membrane and the head group extends downwards to interact with residues in the N terminus (K39, N41, R54), transmembrane domains (K67) and C terminus (R176, R177, E179, R301) of Kir6.2. Our model suggests how PIP(2) increases channel opening and decreases ATP binding and channel inhibition. It is likely to be applicable to the PIP(2)-binding site of other Kir channels, as the residues identified are conserved and influence PIP(2) sensitivity in other Kir channel family members.  相似文献   

3.
Phosphatidylinositol polyphosphates (PIPs) are potent modulators of Kir channels. Previous studies have implicated basic residues in the C terminus of Kir6.2 channels as interaction sites for the PIPs. Here we examined the role of the N terminus and identified an arginine (Arg-54) as a major determinant for PIP(2) modulation of ATP sensitivity in K(ATP) channels. Mutation of Arg-54 to the neutral glutamine (R54Q) and, in particular, to the negatively charged glutamate (R54E) impaired PIP(2) modulation of ATP inhibition, while mutation to lysine (R54K) had no effect. These data suggest that electrostatic interactions between PIP(2) and Arg-54 are an essential step for the modulation of ATP sensitivity. This N-terminal PIP(2) site is highly conserved in Kir channels with the exception of the pH-gated channels Kir1.1, Kir4.1, and Kir5.1 that contain a neutral residue at the corresponding positions. Introduction of an arginine at this position in Kir1.1 channels rendered the N-terminal PIP(2) site functional largely increasing the PIP(2) affinity. Moreover, Kir1.1 channels lose the ability to respond to physiological changes of the intracellular pH. These results explain the need of a silent N-terminal PIP(2) site in pH-gated channels and highlight the N terminus as an important region for PIP(2) modulation of Kir channel gating.  相似文献   

4.
Traffic of integral membrane proteins along the secretory pathway is not simply a default process but can be selective. Such selectivity is achieved by sequence information within the cargo protein that recruits coat protein complexes to drive the formation of transport vesicles. A number of sequence motifs have been identified in the cytoplasmic domains of ion channels that regulate early trafficking events between the endoplasmic reticulum and the Golgi complex. Here, we demonstrate that the following trafficking step from the Golgi compartment to the plasma membrane can also be selective. The N-terminal domain of the inward rectifier potassium channel Kir2.1 contains specific sequence information that is necessary for its efficient export from the Golgi complex. Lack of this information results in accumulation of the protein within the Golgi and a significant decrease in cell surface expression. As similar results were obtained for the N terminus of another Kir channel subfamily member, Kir4.1, which could functionally substitute for the Kir2.1 N terminus, we propose a more general role of the identified N-terminal domains for post-Golgi trafficking of Kir channels.  相似文献   

5.
The human and rat forms of the Kv2.1 channel have identical amino acids over the membrane-spanning regions and differ only in the N- and C-terminal intracellular regions. Rat Kv2.1 activates much faster than human Kv2.1. Here we have studied the role of the N- and C-terminal residues that determine this difference in activation kinetics between the two channels. For this, we constructed mutants and chimeras between the two channels, expressed them in oocytes, and recorded currents by two-electrode voltage clamping. In the N-terminal region, mutation Q67E in the rat channel displayed a slowing of activation relative to rat wild type, whereas mutation D75E in the human channel showed faster activation than human wild type. In the C-terminal region, we found that some residues within the region of amino acids 740-853 ("CTA" domain) were also involved in determining activation kinetics. The electrophysiological data also suggested interactions between the N and C termini. Such an interaction was confirmed directly by using a glutathione S-transferase (GST) fusion protein with the N terminus of Kv2.1, which we showed to bind to the C terminus of Kv2.1. Taken together, these data suggest that exposed residues in the T1 domain of the N terminus, as well as the CTA domain in the C terminus, are important in determining channel activation kinetics and that these N- and C-terminal regions interact.  相似文献   

6.
All members of the inward rectifiier K(+) (Kir) channel family are activated by phosphoinositides and other amphiphilic lipids. To further elucidate the mechanistic basis, we examined the membrane association of Kir6.2 fragments of K(ATP) channels, and the effects of site-directed mutations of these fragments and full-length Kir6.2 on membrane association and K(ATP) channel activity, respectively. GFP-tagged Kir6.2 COOH terminus and GFP-tagged pleckstrin homology domain from phospholipase C delta1 both associate with isolated membranes, and association of each is specifically reduced by muscarinic m1 receptor-mediated phospholipid depletion. Kir COOH termini are predicted to contain multiple beta-strands and a conserved alpha-helix (residues approximately 306-311 in Kir6.2). Systematic mutagenesis of D307-F315 reveals a critical role of E308, I309, W311 and F315, consistent with residues lying on one side of a alpha-helix. Together with systematic mutation of conserved charges, the results define critical determinants of a conserved domain that underlies phospholipid interaction in Kir channels.  相似文献   

7.
8.
ATP-sensitive potassium (K(ATP)) channels are expressed in many excitable, as well as epithelial, cells and couple metabolic changes to modulation of cell activity. ATP regulation of K(ATP) channel activity may involve direct binding of this nucleotide to the pore-forming inward rectifier (Kir) subunit despite the lack of known nucleotide-binding motifs. To examine this possibility, we assessed the binding of the fluorescent ATP analogue, 2',3'-O-(2,4,6-trinitrophenylcyclo-hexadienylidene)adenosine 5'-triphosphate (TNP-ATP) to maltose-binding fusion proteins of the NH(2)- and COOH-terminal cytosolic regions of the three known K(ATP) channels (Kir1.1, Kir6.1, and Kir6.2) as well as to the COOH-terminal region of an ATP-insensitive inward rectifier K(+) channel (Kir2.1). We show direct binding of TNP-ATP to the COOH termini of all three known K(ATP) channels but not to the COOH terminus of the ATP-insensitive channel, Kir2.1. TNP-ATP binding was specific for the COOH termini of K(ATP) channels because this nucleotide did not bind to the NH(2) termini of Kir1.1 or Kir6.1. The affinities for TNP-ATP binding to K(ATP) COOH termini of Kir1.1, Kir6.1, and Kir6.2 were similar. Binding was abolished by denaturing with 4 m urea or SDS and enhanced by reduction in pH. TNP-ATP to protein stoichiometries were similar for all K(ATP) COOH-terminal proteins with 1 mol of TNP-ATP binding/mole of protein. Competition of TNP-ATP binding to the Kir1.1 COOH terminus by MgATP was complex with both Mg(2+) and MgATP effects. Glutaraldehyde cross-linking demonstrated the multimerization potential of these COOH termini, suggesting that these cytosolic segments may directly interact in intact tetrameric channels. Thus, the COOH termini of K(ATP) tetrameric channels contain the nucleotide-binding pockets of these metabolically regulated channels with four potential nucleotide-binding sites/channel tetramer.  相似文献   

9.
ATP-sensitive potassium channels form a link between membrane excitability and cellular metabolism. These channels are important in physiological processes such as insulin release and they are an important site of drug action. They are an octomeric complex comprised of four sulfonylurea receptors, a member of the ATP-binding cassette family of proteins, and four Kir 6.0 subunits from the inward rectifier family of potassium channels. We have investigated the nature of the interaction between SUR1 and Kir 6.2 and the domains on the channel responsible for the biochemical and functional manifestations of coupling. The results point to the proximal C terminus determining biochemical interaction in a region that also largely governs homotypic and heterotypic interaction between different Kir family members. While this domain may be necessary for functional communication between the two proteins, it is not sufficient since relative modifications of either the N or C terminus are able to disrupt many aspects of functional coupling mediated by the sulfonylurea receptor.  相似文献   

10.
K(ATP) channels couple intermediary metabolism to cellular excitability. Such a property relies on the inherent ATP-sensing mechanism known to be located in the Kir6 subunit. However, the molecular basis for the ATP sensitivity remains unclear. Here we showed evidence for protein domains and amino acid residues essential for the channel gating by intracellular ATP. Chimerical channels were constructed using protein domains of Kir6.2 and Kir1.1, expressed in HEK293 cells, and studied in inside-out patches. The N and C termini, although important, were inadequate for channel gating by intracellular ATP. Full ATP sensitivity also required M1 and M2 helices. Cytosolic portions of the M1 and M2 sequences were crucial, in which six amino acid residues were identified, i.e., Thr76, Met77, Ala161, Iso162, Leu164, and Cys166. Site-specific mutation of any of them reduced the ATP sensitivity. Construction of these residues together with the N/C termini produced ATP sensitivity identical to the wild-type channels. The requirement for specific membrane helices suggests that the Kir6.2 gating by ATP is not shared by even two closest relatives in the K(+) channel family, although the general gating mechanisms involving membrane helices appear to be conserved in all K(+) channels.  相似文献   

11.
Inward rectifier potassium (Kir) channels regulate cell excitability and transport K+ ions across membranes. Homotetrameric models of three mammalian Kir channels (Kir1.1, Kir3.1, and Kir6.2) have been generated, using the KirBac3.1 transmembrane and rat Kir3.1 intracellular domain structures as templates. All three models have been explored by 10 ns molecular dynamics simulations in phospholipid bilayers. Analysis of the initial structures revealed conservation of potential lipid interaction residues (Trp/Tyr and Arg/Lys side chains near the lipid headgroup-water interfaces). Examination of the intracellular domains revealed key structural differences between Kir1.1 and Kir6.2 which may explain the difference in channel inhibition by ATP. The behavior of all three models in the MD simulations revealed that they have conformational stability similar to that seen for comparable simulations of, for example, structures derived from cryoelectron microscopy data. Local distortions of the selectivity filter were seen during the simulations, as observed in previous simulations of KirBac and in simulations and structures of KcsA. These may be related to filter gating of the channel. The intracellular hydrophobic gate does not undergo any substantial changes during the simulations and thus remains functionally closed. Analysis of lipid-protein interactions of the Kir models emphasizes the key role of the M0 (or "slide") helix which lies approximately parallel to the bilayer-water interface and forms a link between the transmembrane and intracellular domains of the channel.  相似文献   

12.
Vascular ATP-sensitive K(+) channels are inhibited by multiple vasoconstricting hormones via the protein kinase C (PKC) pathway. However, the molecular substrates for PKC phosphorylation remain unknown. To identify the PKC sites, Kir6.1/SUR2B and Kir6.2/SUR2B were expressed in HEK293 cells. Following channel activation by pinacidil, the catalytic fragment of PKC inhibited the Kir6.1/SUR2B currents but not the Kir6.2/SUR2B currents. Phorbol 12-myristate 13-acetate (a PKC activator) had similar effects. Using Kir6.1-Kir6.2 chimeras, two critical protein domains for the PKC-dependent channel inhibition were identified. The proximal N terminus of Kir6.1 was necessary for channel inhibition. Because there was no PKC phosphorylation site in the N-terminal region, our results suggest its potential involvement in channel gating. The distal C terminus of Kir6.1 was crucial where there are several consensus PKC sites. Mutation of Ser-354, Ser-379, Ser-385, Ser-391, or Ser-397 to nonphosphorylatable alanine reduced PKC inhibition moderately but significantly. Combined mutations of these residues had greater effects. The channel inhibition was almost completely abolished when 5 of them were jointly mutated. In vitro phosphorylation assay showed that 4 of the serine residues were necessary for the PKC-dependent (32)P incorporation into the distal C-terminal peptides. Thus, a motif containing four phosphorylation repeats is identified in the Kir6.1 subunit underlying the PKC-dependent inhibition of the Kir6.1/SUR2B channel. The presence of the phosphorylation motif in Kir6.1, but not in its close relative Kir6.2, suggests that the vascular K(ATP) channel may have undergone evolutionary optimization, allowing it to be regulated by a variety of vasoconstricting hormones and neurotransmitters.  相似文献   

13.
Protein kinase A (PKA) is targeted to discrete subcellular locations close to its intended substrates through interaction with A kinase-anchoring proteins (AKAPs). Ion channels represent a diverse and important group of kinase substrates, and it has been shown that membrane targeting of PKA through association with AKAPs facilitates PKA-mediated phosphorylation and regulation of several classes of ion channel. Here, we investigate the effect of AKAP79, a membrane-associated multivalent-anchoring protein, upon the function and modulation of the strong inwardly rectifying potassium channel, Kir2.1. Functionally, the presence of AKAP79 enhanced the response of Kir2.1 to elevated intracellular cAMP, suggesting a requirement for a pool of PKA anchored close to the channel. Antibodies directed against a hemagglutinin epitope tag on Kir2.1 coimmunoprecipitated AKAP79, indicating that the two proteins exist together in a complex within intact cells. In support of this, glutathione S-transferase fusion proteins of both the intracellular N and C domains of Kir2.1 isolated AKAP79 from cell lysates, while glutathione S-transferase alone failed to interact with AKAP79. Together, these findings suggest that AKAP79 associates directly with the Kir2.1 ion channel and may serve to anchor kinase enzymes in close proximity to key channel phosphorylation sites.  相似文献   

14.
ATP-sensitive potassium (KATP) channels are reversibly inhibited by intracellular ATP. Agents that interact with sulfhydryl moieties produce an irreversible inhibition of KATP channel activity when applied to the intracellular membrane surface. ATP appears to protect against this effect, suggesting that the cysteine residue with which thiol reagents interact may either lie within the ATP-binding site or be inaccessible when the channel is closed. We have examined the interaction of the membrane-impermeant thiol-reactive agent p-chloromercuriphenylsulphonate (pCMPS) with the cloned β cell KATP channel. This channel comprises the pore-forming Kir6.2 and regulatory SUR1 subunits. We show that the cysteine residue involved in channel inhibition by pCMPS resides on the Kir6.2 subunit and is located at position 42, which lies within the NH2 terminus of the protein. Although ATP protects against the effects of pCMPS, the ATP sensitivity of the KATP channel was unchanged by mutation of C42 to either valine (V) or alanine (A), suggesting that ATP does not interact directly with this residue. These results are consistent with the idea that C42 is inaccessible to the intracellular solution, and thereby protected from interaction with pCMPS when the channel is closed by ATP. We also observed that the C42A mutation does not affect the ability of SUR1 to endow Kir6.2 with diazoxide sensitivity, and reduces, but does not prevent, the effects of MgADP and tolbutamide, which are mediated via SUR1. The Kir6.2-C42A (or V) mutant channel may provide a suitable background for cysteine-scanning mutagenesis studies.  相似文献   

15.
ATP-sensitive K(+) channels (K(ATP)) are regulated by pH in addition to ATP, ADP, and phospholipids. In the study we found evidence for the molecular basis of gating the cloned K(ATP) by intracellular protons. Systematic constructions of chimerical Kir6.2-Kir1.1 channels indicated that full pH sensitivity required the N terminus, C terminus, and M2 region. Three amino acid residues were identified in these protein domains, which are Thr-71 in the N terminus, Cys-166 in the M2 region, and His-175 in the C terminus. Mutation of any of them to their counterpart residues in Kir1.1 was sufficient to completely eliminate the pH sensitivity. Creation of these residues rendered the mutant channels clear pH-dependent activation. Thus, critical players in gating K(ATP) by protons are demonstrated. The pH sensitivity enables the K(ATP) to regulate cell excitability in a number of physiological and pathophysiological conditions when pH is low but ATP concentration is normal.  相似文献   

16.
Interdomain interactions between intracellular N and C termini have been described for various K+ channels, including the voltage-gated Kv2.1, and suggested to affect channel gating. However, no channel regulatory protein directly affecting N/C interactions has been demonstrated. Most Kv2.1 channel interactions with regulatory factors occur at its C terminus. The vesicular SNARE that is also present at a high concentration in the neuronal plasma membrane, VAMP2, is the only protein documented to affect Kv2.1 gating by binding to its N terminus. As its binding target has been mapped near a site implicated in Kv2.1 N/C interactions, we hypothesized that VAMP2 binding to the N terminus requires concomitant conformational changes in the C terminus, which wraps around the N terminus from the outside, to give VAMP2 access. Here, we first determined that the Kv2.1 N terminus, although crucial, is not sufficient to convey functional interaction with VAMP2, and that, concomitant to its binding to the “docking loop” at the Kv2.1 N terminus, VAMP2 binds to the proximal part of the Kv2.1 C terminus, C1a. Next, using computational biology approaches (ab initio modeling, docking, and molecular dynamics simulations) supported by molecular biology, biochemical, electrophysiological, and fluorescence resonance energy transfer analyses, we mapped the interaction sites on both VAMP2 and Kv2.1 and found that this interaction is accompanied by rearrangements in the relative orientation of Kv2.1 cytoplasmic domains. We propose that VAMP2 modulates Kv2.1 inactivation by interfering with the interaction between the docking loop and C1a, a mechanism for gating regulation that may pertain also to other Kv channels.Interdomain interactions between intracellularly located N and C termini have been described for various K+ channels, including inwardly rectifying Kir2.3 and Kir6.2 (1, 2), small conductance Ca2+-activated (hSK3) (3), and voltage-gated Kv2.1 (4) and Kv4.1 (5) channels. In the case of Kv2.1, two modes of interaction have been proposed: an association of the distal part of Kv2.1 C terminus (termed CTA domain; amino acids (aa) 741–853)4 with aa 67 and 75 of the Kv2.1 N terminus (4); or an association between the proximal part of the Kv2.1 C terminus (aa 444–477) and the predicted loop structure (aa 55–71) in the N-terminal T1 domain (6). In addition, involvement of the S4-S5 linker in this interaction has been suggested (7). Although these studies propose two different C-terminal sites, they indicate a specific loop in the N terminus of Kv2.1 (6, 8), which could be functionally related to the Shaker and Shal docking loops in the lateral part of their T1 domains (9, 10). These latter loops are responsible for the subfamily-specific association with β-subunits (Kvβ and KChIP, respectively). Further, the interaction between the N and C cytoplasmic termini (N/C interaction) of Kv2.1 has been shown to be dynamic and voltage-dependent and to involve structural rearrangements between these domains, which could affect both activation and inactivation gating of the channel (4, 6, 7). These rearrangements can be clearly detected with fluorescence resonance energy transfer (FRET) (11). A similar N/C interaction has been shown to affect gating of the closely related Kv4.1 channel (5, 12).It is conceivable that the specific packaging of Kv2.1 cytoplasmic termini (a relatively long C terminus (>400 aa) wrapping the N terminus (<190 aa) from the outside (4)) not only supports multiple interactions between the termini but also reflects the fact that most of the interactions of the channel with intracellular and membrane-bound regulatory factors occur at the C terminus, including channel phosphorylation (1315), clustering through a unique proxinal restriction and clustering signal (16), and protein-protein interactions with both the plasma membrane SNAREs, syntaxin 1A and SNAP-25 (1719), and the MiRP2 (KCNE3) peptide (20). For the Kv2.1 N terminus, on the other hand, there are only two examples of protein-protein interactions: a transient association with KChAP (21), which does not affect channel function; and an interaction with the vesicular SNARE partner VAMP2 (synaptobrevin 2), which is also present at a high concentration in the neuronal plasma membrane and enhances channel inactivation (8). Specifically, VAMP2 has been shown to associate with the extension of a docking loop in the lateral part of the T1 domain (8) near the site of interaction with the C terminus (4, 6). Thus, it is reasonable to hypothesize that interaction with VAMP2 will affect the N/C interaction, similar to proton-mediated Kir2.3 (1) and Kir1.1 (22) N/C interactions or the ATP-dependent Kir6.2 (2) N/C interaction. To date, no protein molecule that directly affects N/C interactions in a K+ channel has been demonstrated. Because VAMP2 was the first protein documented to affect Kv2.1 channel gating by binding to a specific N-terminal site, which is probably masked by the C terminus, we have put forward the idea that its interaction with the Kv2.1 N terminus requires conformational changes in the C terminus that will enable its access to the N terminus.Here we endeavored to gain a mechanistic and structural understanding of the Kv2.1-VAMP2 interaction. Based on our evidence, we propose that VAMP2 modulates Kv2.1 gating by interfering with the Kv2.1 cytoplasmic N/C interaction.  相似文献   

17.
Inward rectifier (Kir) potassium channels are characterized by two transmembrane helices per subunit, plus an intracellular C-terminal domain that controls channel gating in response to changes in concentration of various ligands. Based on the crystal structure of the tetrameric C-terminal domain of Kir3.1, it is possible to build a homology model of the ATP-binding C-terminal domain of Kir6.2. Molecular dynamics simulations have been used to probe the dynamics of Kir C-terminal domains and to explore the relationship between their dynamics and possible mechanisms of channel gating. Multiple simulations, each of 10 ns duration, have been performed for Kir3.1 (crystal structure) and Kir6.2 (homology model), in both their monomeric and tetrameric forms. The Kir6.2 simulations were performed with and without bound ATP. The results of the simulations reveal comparable conformational stability for the crystal structure and the homology model. There is some decrease in conformational flexibility when comparing the monomers with the tetramers, corresponding mainly to the subunit interfaces in the tetramer. The beta-phosphate of ATP interacts with the side chain of K185 in the Kir6.2 model and simulations. The flexibility of the Kir6.2 tetramer is not changed greatly by the presence of bound ATP, other than in two loop regions. Principal components analysis of the simulated dynamics suggests loss of symmetry in both the Kir3.1 and Kir6.2 tetramers, consistent with "dimer-of-dimers" motion of subunits in C-terminal domains of the corresponding Kir channels. This is suggestive of a gating model in which a transition between exact tetrameric symmetry and dimer-of-dimers symmetry is associated with a change in transmembrane helix packing coupled to gating of the channel. Dimer-of-dimers motion of the C-terminal domain tetramer is also supported by coarse-grained (anisotropic network model) calculations. It is of interest that loss of exact rotational symmetry has also been suggested to play a role in gating in the bacterial Kir homolog, KirBac1.1, and in the nicotinic acetylcholine receptor channel.  相似文献   

18.
Types and distributions of inwardly rectifying potassium (Kir) channels are one of the major determinants of the electrophysiological properties of cardiac myocytes. Kir2.1 (classical inward rectifier K(+) channel), Kir6.2/SUR2A (ATP-sensitive K(+) channel) and Kir3.1/3.4 (muscarinic K(+) channels) in cardiac myocytes are commonly upregulated by a membrane lipid, phosphatidylinositol 4,5-bisphosphates (PIP(2)). PIP(2) interaction sites appear to be conserved by positively charged amino acid residues and the putative alpha-helix in the C-terminals of Kir channels. PIP(2) level in the plasma membrane is regulated by the agonist stimulation. Kir channels in the cardiac myocytes seem to be actively regulated by means of the change in PIP(2) level rather than by downstream signal transduction pathways.  相似文献   

19.
The activity of ATP-sensitive potassium (K(ATP)) channels is governed by the concentration of intracellular ATP and ADP and is thus responsive to the metabolic status of the cell. Phosphorylation of K(ATP) channels by protein kinase A (PKA) or protein kinase C (PKC) results in the modulation of channel activity and is particularly important in regulating smooth muscle tone. At the molecular level the smooth muscle channel is composed of a sulfonylurea subunit (SUR2B) and a pore-forming subunit Kir6.1 and/or Kir6.2. Previously, Kir6.1/SUR2B channels have been shown to be inhibited by PKC, and Kir6.2/SUR2B channels have been shown to be activated or have no response to PKC. In this study we have examined the modulation of channel complexes formed of the inward rectifier subunit, Kir6.2, and the sulfonylurea subunit, SUR2B. Using a combination of biochemical and electrophysiological techniques we show that this complex can be inhibited by protein kinase C in a Ca(2+)-dependent manner and that this inhibition is likely to be as a result of internalization. We identify a residue in the distal C terminus of Kir6.2 (Ser-372) whose phosphorylation leads to down-regulation of the channel complex. This inhibitory effect is distinct from activation which is seen with low levels of channel activity.  相似文献   

20.
Kir2.3 plays an important part in the maintenance of membrane potential in neurons and myocardium. Identification of intracellular signaling molecules controlling this channel thus may lead to an understanding of the regulation of membrane excitability. To determine whether Kir2.3 is modulated by direct phosphorylation of its channel protein and identify the phosphorylation site of protein kinase C (PKC), we performed experiments using several recombinant and mutant Kir2.3 channels. Whole-cell Kir2.3 currents were inhibited by phorbol 12-myristate 13-acetate (PMA) in Xenopus oocytes. When the N-terminal region of Kir2.3 was replaced with that of Kir2.1, another member in the Kir2 family that is insensitive to PMA, the chimerical channel lost its PMA sensitivity. However, substitution of the C terminus was ineffective. Four potential PKC phosphorylation sites in the N terminus were studied by comparing mutations of serine or threonine with their counterpart residues in Kir2.1. Whereas substitutions of serine residues at positions 5, 36, and 39 had no effect on the channel sensitivity to PMA, mutation of threonine 53 completely eliminated the channel response to PMA. Interestingly, creation of this threonine residue at the corresponding position (I79T) in Kir2.1 lent the mutant channel a PMA sensitivity almost identical to the wild-type Kir2.3. These results therefore indicate that Kir2.3 is directly modulated by PKC phosphorylation of its channel protein and threonine 53 is the PKC phosphorylation site in Kir2.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号