首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

2.
The interaction between a T cell and an antigen-presenting cell (APC) can trigger a signaling response that leads to T cell activation. Prior studies have shown that ligation of the T cell receptor (TCR) triggers a signaling cascade that proceeds through the coalescence of TCR and various signaling molecules (e.g., the kinase Lck and adaptor protein LAT [linker for T cell activation]) into microdomains on the plasma membrane. In this study, we investigated another ligand–receptor interaction (CD58–CD2) that facilities T cell activation using a model system consisting of Jurkat T cells interacting with a planar lipid bilayer that mimics an APC. We show that the binding of CD58 to CD2, in the absence of TCR activation, also induces signaling through the actin-dependent coalescence of signaling molecules (including TCR-ζ chain, Lck, and LAT) into microdomains. When simultaneously activated, TCR and CD2 initially colocalize in small microdomains but then partition into separate zones; this spatial segregation may enable the two receptors to enhance signaling synergistically. Our results show that two structurally distinct receptors both induce a rapid spatial reorganization of molecules in the plasma membrane, suggesting a model for how local increases in the concentration of signaling molecules can trigger T cell signaling.  相似文献   

3.
4.
T cell tolerance is a critical element of tumor escape. However, the mechanism of tumor-associated T cell tolerance remains unresolved. Using an experimental system utilizing the adoptive transfer of transgenic T cells into naive recipients, we found that the population of Gr-1+ immature myeloid cells (ImC) from tumor-bearing mice was able to induce CD8+ T cell tolerance. These ImC accumulate in large numbers in spleens, lymph nodes, and tumor tissues of tumor-bearing mice and are comprised of precursors of myeloid cells. Neither ImC from control mice nor progeny of tumor-derived ImC, including tumor-derived CD11c+ dendritic cells, were able to render T cells nonresponsive. ImC are able to take up soluble protein in vivo, process it, and present antigenic epitopes on their surface and induce Ag-specific T cell anergy. Thus, this is a first demonstration that in tumor-bearing mice CD8+ T cell tolerance is induced primarily by ImC that may have direct implications for cancer immunotherapy.  相似文献   

5.
To evaluate the capability of NK cells and cytotoxic T lymphocytes to interact with normal hematopoietic progenitor cells (HPC), as compared to neoplastic lymphohematopoietic cells, we investigated inhibition of colony growth of these cell populations in semi-solid culture systems, after incubation with cloned cytotoxic effector cells. Three different types of cloned effector cells were investigated: TCR-/CD3- NK cells, TCR-gamma delta+/CD3+ cells, and TCR-alpha beta+/CD3+ cytotoxic T lymphocytes. Effector cells showed differential levels of tumor cell colony inhibition, but no MHC-non-restricted lysis of normal HPC was observed. Pre-stimulation of normal HPC by culturing on established stromal layers had no effect. Cell-mediated lysis of HPC only occurred by Ag-specific MHC-restricted lysis by CTL, or by antibody-dependent cellular cytotoxicity. In cell mixing experiments, irradiated tumor cells, but not normal bone marrow cells inhibited tumor cell lysis. Furthermore, cloned effector lymphocytes were able to specifically eliminate malignant cells from tumor contaminated bone marrow without damaging normal HPC. When fresh leukemic cells were used as targets, growth of acute myeloblastic leukemia colonies was inhibited after incubation with several cytotoxic effector clones, whereas chronic myeloid leukemia precursor cells showed limited sensitivity to MHC-non-restricted cytolysis. These results indicate that MHC-non-restricted cytolysis by NK cells is selectively directed against neoplastic cells and not against normal HPC.  相似文献   

6.
mAb directed against the TCR/CD3 complex activate resting T cells. However, TCR/CD3 signaling induces death by apoptosis in immature (CD4+CD8+) murine thymocytes and certain transformed leukemic T cell lines. Here we show that anti-TCR and anti-CD3 mAb induce growth arrest of cloned TCR-gamma delta + T cells in the presence of IL-2. In the absence of exogenous IL-2, however, the very same anti-TCR/CD3 mAb stimulated gamma delta (+)-clones to proliferation and IL-2 production. In the presence of exogenous IL-2, anti-TCR/CD3 mAb induced the degradation of DNA into oligosomal bands of approximately 200 bp length in cloned gamma delta + T cells. This pattern of DNA fragmentation is characteristic for the programmed cell death termed apoptosis. These results demonstrate that TCR/CD3 signaling can induce cell death in cloned gamma delta + T cells. In addition, this report is the first to show that apoptosis triggered by TCR/CD3 signaling is not restricted to CD4+CD8+ immature thymocytes and transformed leukemic T cell lines but can be also observed with IL-2-dependent normal (i.e., TCR-gamma delta +) T cells.  相似文献   

7.
CD47 signals T cell death.   总被引:10,自引:0,他引:10  
Activation-induced death of T cells regulates immune responses and is considered to involve apoptosis induced by ligation of Fas and TNF receptors. The role of other receptors in signaling T cell death is less clear. In this study we demonstrate that activation of specific epitopes on the Ig variable domain of CD47 rapidly induces apoptosis of T cells. A new mAb, Ad22, to this site induces apoptosis of Jurkat cells and CD3epsilon-stimulated PBMC, as determined by morphological changes, phosphatidylserine exposure on the cell surface, uptake of propidium iodide, and true counts by flow cytometry. In contrast, apoptosis was not observed following culture with anti-CD47 mAbs 2D3 or B6H12 directed to a distant or closely adjacent region, respectively. CD47-mediated cell death was independent of CD3, CD4, CD45, or p56lck involvement as demonstrated by studies with variant Jurkat cell lines deficient in these signaling pathways. However, coligation of CD3epsilon and CD47 enhanced phosphatidylserine externalization on Jurkat cells with functional CD3. Furthermore, normal T cells required preactivation to respond with CD47-induced apoptosis. CD47-mediated cell death appeared to proceed independent of Fas or TNF receptor signaling and did not involve characteristic DNA fragmentation or requirement for IL-1beta-converting enzyme-like proteases or CPP32. Taken together, our data demonstrate that under appropriate conditions, CD47 activation results in very rapid T cell death, apparently mediated by a novel apoptotic pathway. Thus, CD47 may be critically involved in controlling the fate of activated T cells.  相似文献   

8.
To study T cell tolerance, transgenic mice were generated that expressed the Mlsa-reactive T cell receptor (TCR) beta chain V beta 8.1 (cDNA) under the control of the H-2Kb promoter/immunoglobulin heavy chain enhancer on approximately 90% of peripheral T cells. In transgenic mice bearing Mlsa, thymocytes expressing the TCR at a high density were deleted and the percentage of Thy 1.2+ lymph node cells was reduced. The CD4/CD8 ratio of mature T cells was reversed in Mlsa and Mlsb transgenic mice independent of the H-2. RNA analysis and immunofluorescence with TCR V beta-specific antibodies revealed that expression of endogenous TCR beta genes was suppressed. Both Mlsa and Mlsb TCR beta chain transgenic mice mounted a T-cell-dependent IgG response against viral antigens, whereas the capacity to generate alloreactive and virus-specific cytotoxic T cells was impaired in TCR beta chain transgenic Mlsa, but not in transgenic Mlsb mice.  相似文献   

9.
The positive and negative selection of immature thymocytes that shapes the mature T cell repertoire appears to occur at an intermediate stage of development when the cells express low levels of TCR/CD3. These cells are also CD4+CD8+ and CD28+ (dull), and signals delivered by these three accessory molecules have been implicated in the selection process. We have examined the regulatory function of these accessory molecules on responses of immature thymocytes stimulated through the TCR/CD3 complex. Cross-linking CD4 or CD8 with CD3 strongly enhanced signal transduction via CD3 as assessed by protein tyrosine phosphorylation and calcium mobilization. Subsequent cell proliferation could be induced by soluble anti-CD28 mAb, which was comitogenic for cells stimulated with CD3 x CD4 or CD3 x CD8 cross-linking, but was without effect on cells stimulated with CD3 x CD3 cross-linking. A potential role for CD28 signal transduction in thymic maturation is suggested by the demonstration that the BB-1 molecule, a natural ligand for CD28, is expressed on thymic stromal cells. Taken together, our data suggest a model of thymic development in which CD4 or CD8 may enhance TCR/CD3 signaling upon coligation by an MHC molecule. If the CD28 surface receptor is simultaneously stimulated by a BB-1 expressing stromal cell, this set of interactions could lead to proliferation and positive selection. In the absence of CD28 stimulation the enhanced TCR/CD3 signals might lead to apoptosis and negative selection.  相似文献   

10.
Development of tolerance to self Ag occurs during a negative cell selection process in the thymus. This selection process is thought to involve interactions between Ag-specific thymocyte receptors and self Ag presented by the MHC proteins on accessory cells, resulting in deletion of potentially harmful self-reactive precursors. However, the mechanisms underlying this clonal deletion have not been identified. In confirmation of previous findings (C. A. Smith, G. T. Williams, R. Kingston, E. J. Jenkins, and J. J. T. Owen, 1989. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature 337:181), we have found that an anti-CD3 antibody stimulated DNA fragmentation, characteristic of a suicide mechanism known as apoptosis or programmed cell death (PCD), in suspensions of human thymocytes. Endonuclease activation and cell killing were dependent on an early, sustained increase in cytosolic Ca2+ concentration, most of which was of extracellular origin. Although the magnitude and duration of the Ca2+ increase were similar to those observed in response to Con A, the mitogen did not stimulate DNA fragmentation or cell death. Phorbol ester prevented Ca2+-dependent DNA fragmentation and cell killing in response to anti-CD3 or other agents that stimulated PCD, suggesting that activation of protein kinase C abrogated cell suicide. Disappearance of CD4+CD8+ immature thymocytes was generally observed in response to all agents that stimulated PCD, whereas mature PBL were insensitive to stimulation of PCD. Our results suggest that antibody-mediated stimulation of immature thymocytes via the TCR complex results in Ca2+-dependent, endonuclease-mediated cell killing, depending on the activation status of protein kinase C.  相似文献   

11.
Activation of peripheral blood T cells, and the leukemic T cell line Jurkat, as measured by mobilization of intracellular calcium, by an anti-TCR antibody is blocked by mAb (T191) to the leukocyte common Ag (CD45). T191 also blocked down-regulation of the CD3-TCR complex induced by an anti-CD3 mAb. Vanadate, a phosphotyrosine phosphatase inhibitor, partially blocks the effect of T191 and restored mobilization of intracellular calcium. Assays of the immunoprecipitates of T191 and CD45 from both Jurkat-BM1 and peripheral T cells showed that the immune complexes had intrinsic phosphatase activity. A parallel immunoprecipitate using a mAb (4-10) against HLA class I showed no such activity. Further analysis of the T191 immunocomplex revealed activity against phosphotyrosine, p-nitrophenylphosphate, and [32P-poly-glu-tyr, but not against phosphoserine. Phosphatase activity was inhibited by Vanadate, but not by Zn2+ or F-. These results show that CD45 is a phosphotyrosine phosphatase, and strongly suggest that tyrosine phosphorylation/dephosphorylation is critically involved in activation of T cells through the TCR-CD3 complex.  相似文献   

12.
Previous work has shown that abrogation of oral tolerance is mediated by T cells which are found in the CD3+, L3T4- (CD4-), and Lyt-2- (CD8-) subset (termed double-negative; DN) in mice. Inasmuch as it is known that athymic, nude (nu/nu) mice possess Thy 1+, CD4-, and CD8- T cells which also exhibit a functionally rearranged TCR gamma-chain, we investigated whether this subset of nude T cells contained functional immunoregulatory cells. In this report, we examined the phenotype and distribution of CD3+ T cells in the spleen and in the mesenteric and peripheral lymph nodes of BALB/c nu/nu mice in comparison with normal mice (+/+). In the spleens of nude mice, the predominant CD3+ T cell subpopulation was DN. Further, in mesenteric and peripheral lymph nodes, approximately one-third and one-half of the CD3+ T cells were double negative, respectively. In contrast, CD3+, DN T cells represent a small subpopulation in normal (+/+) mice. We next showed that functional regulatory T cells which possess the ability to abrogate oral tolerance were induced in nu/nu mice by Ag priming. BALB/c nude mice were immunized with SRBC, and the splenic CD3+, Vicia villosa-adherent cells were obtained by panning. Adoptive transfer of CD3+, V. villosa-adherent T cells to orally tolerant BALB/c mice restored responsiveness to SRBC, whereas V. villosa nonadherent cells were without effect. In other experiments, CD3+ T cells from the spleens of SRBC-primed mice were further enriched for the CD5+, DN phenotype and adoptive transfer of this subset completely abrogated oral tolerance to SRBC. To characterize the nature of the TCR expressed on these CD3+, DN T cells, we developed a rabbit antibody to a synthetic peptide (residues 209-218: Tyr-Ala-Asn-Ser-Phe-Asn-Asn-Glu-Lys-Leu) which was synthesized from a deduced sequence of the murine delta-gene. Immunoprecipitation of a cell membrane fraction from CD3+, DN T cells with anti-delta TCR antibody isolated a 45-kDa band. Furthermore, immunoprecipitation of these cells with anti-CD3 (145-2C11) revealed bands at 45 and 35 kDa (corresponding to delta- and gamma-chains, respectively). Taken together, these results are the first to show that gamma delta-TCR bearing CD3+, CD4-, and CD8- T cells are functional and reverse oral tolerance when adoptively transferred.  相似文献   

13.
We describe here the use of a sensitive and accurate multiprobe V beta RNase protection assay in characterizing the expression levels of 17 V beta genes in separated CD4+ and CD8+ subsets of selected mouse strains. The IE-reactive V beta genes (V beta s 11, 12, 5.1 and 16) showed various patterns of skewed subset expression in different strains, suggesting additional influences of IA, class I, and non-MHC genes in the selection process. Clonal deletion of V beta 11- and V beta 12-bearing T cells, among others, was skewed strongly towards the CD4+ subset in many IE+ mouse strains, supporting the notion that negative selection can cause incomplete, subset biased, V beta clonal deletions. Broad analysis in separated CD4+ and CD8+ subsets gave improved resolution of V beta repertoire selection, and revealed significant strain and/or subset specific skewing for additional V beta genes; with consistent bias towards higher expression of V beta 7 and V beta 13 in the CD8+ subset, and V beta 15 in the CD4+ subset of most mouse strains. The influence of diverse non-MHC ligands in V beta repertoire selection was further illustrated by the identification of unique V beta repertoires for six different MHC-identical (H2k) strains. Such polymorphisms in TCR repertoire expression may help to define better disease susceptibility phenotypes.  相似文献   

14.
Previous studies suggested that depending on their maturation state, dendritic cells (DC) could either induce T cell tolerance (immature and semimature DC) or T cell activation (mature DC). Pretreatment of C57BL/6 mice with encephalitogenic myelin oligodendrocyte glycoprotein (MOG)(35-55) peptide-loaded semimature DC protected from MOG-induced autoimmune encephalomyelitis. This protection was mediated by IL-10-producing CD4 T cells specific for the self Ag. Here we show that semimature DC loaded with the MHC class II-restricted nonself peptide Ag (OVA) induce an identical regulatory T cell cytokine pattern. However, semimature DC loaded simultaneously with MHC class II- and MHC class I-restricted peptides, could efficiently initiate CD8 T cell responses leading to autoimmune diabetes in a TCR-transgenic adoptive transfer model. Double-peptide-loaded semimature DC also induced simultaneously in the same animal partially activated CD8 T cells with cytolytic function as well as protection from MOG-induced autoimmune encephalomyelitis. Our study suggests that the decision between tolerance and immunity not only depends on the DC, but also on the type and activation requirements of the responding T cell.  相似文献   

15.
The CD4 and CD8 molecules play an important role in the stimulation of T cells and in the process of thymic education. Most mature T cells express the alpha beta TCR and either CD4 or CD8; however, there is a small population of alpha beta+ TCR T cells that lack both CD4 and CD8. Little is known of the biology of the CD4- CD8- (double-negative) alpha beta+ TCR T cells or the nature of the Ag to which they may respond. These cells not only represent a novel population of T cells but also provide useful biologic tools to study the roles that CD4 and CD8 play in T cell activation. In this study we have addressed two questions. Firstly, whether CD4- CD8- alpha beta+ TCR T cells have functionally active TCR and, secondly, whether CD4 or CD8 is required for the activation of T cells by bacterial enterotoxins. Six double-negative alpha beta+ TCR T cell clones, propagated from two healthy donors, were challenged with a panel of nine bacterial enterotoxins. The V alpha and V beta usage of their TCR was determined by polymerase chain reaction. All of the CD4-CD8- clones proliferated in response to at least one of the enterotoxins, in a V beta-specific manner. The proliferative response of the CD4-CD8- alpha beta+ TCR T cell clones was similar in magnitude to that exhibited by CD4+ T cell clones of known V beta expression. These data clearly show that the CD4 and CD8 molecules are not required for the activation of untransformed human T cells by bacterial enterotoxins. Furthermore, these results indicate that CD4-CD8- alpha beta+ TCR T cells, normally present in all individuals, are not functionally silent, because they can be stimulated via their TCR. Their physiologic role, like that of gamma delta T cells, remains to be elucidated.  相似文献   

16.
A Winoto  D Baltimore 《Cell》1989,59(4):649-655
T cells expressing either the alpha beta or gamma delta antigen receptor (TCR) are distinct cell lineages. The single locus encoding the TCR alpha and delta genes requires special regulation to avoid alpha gene expression in gamma delta T cells. We show here that the minimal alpha enhancer is active in the gamma delta T cell lineage but gains alpha beta lineage specificity through negative cis-acting elements 3' of the C alpha gene that silence the enhancer in gamma delta T cells. The negative elements at the C alpha locus consist of several silencers that work in an orientation- and distance-independent fashion. These silencers also act on a retroviral enhancer that is normally ubiquitously expressed, restricting its activity to alpha beta cells. The alpha silencers are active in non-T cell lines, suggesting that the decision of a cell to differentiate into the alpha beta T cell lineage may involve specific relief from these silencers. Silencers are likely to be as important as enhancers in establishing lineage-specific gene expression in many systems.  相似文献   

17.
The signals required for activation and the differentiation of human triple negative postnatal thymocytes were studied in vitro. Highly purified populations of CD4-, CD8-, CD3- (triple negative) thymocytes were isolated by combined panning and preparative cell sorting and the ability of triple negative thymocytes to proliferate in response to various cytokines determined. Maximal triple negative proliferation was obtained using a mitogenic combination of CD2 antibodies and either rIL-2 or the phorbol ester, PMA. Long term growth (2 to 6 wk) of postnatal triple negative thymocytes was best achieved using CD2 antibodies and rIL-2. After in vitro culture with CD2 antibodies and rIL-2, triple negative thymocytes gave rise to TCR-delta+ cells beginning on day 2 of culture (approximately 15% CD3/TCR-delta+) reaching maximum (approximately 60% CD3/TCR-delta+) on day 7 with stable number of TCR-delta+ cells observed in vitro for up to 6 wk. Analysis of 30 clones of human postnatal triple negative thymocytes demonstrated 9 of 30 (30%) were TCR-delta+, beta F1-, essentially ruling out overgrowth of the triple negative population over time by a minor pool of contaminating TCR-delta+ cells. Thus, these studies have defined an in vitro culture system for human postnatal T cell precursors and demonstrated that precursors of human TCR-gamma delta+ T cells reside in the triple negative thymocyte pool.  相似文献   

18.
T cell lines with a novel phenotype (CD3+ TCR-alpha/beta+ CD4- CD8-) were developed from the peripheral blood of a patient with a combined immunodeficiency and tissue injury resembling graft-vs-host disease. One of these IL-2-dependent T cell lines demonstrated non-MHC-restricted cytolytic function against tumor targets, syngeneic and allogeneic fibroblasts, and PHA blasts from allogeneic donors. The other cell line only became cytotoxic in the presence of lectin or anti-CD3 antibody. The two cell lines also differed in their expression of the T-200 gene products CD45RO (gp180) and CD45RA (gp220). Both cell lines produced tumor necrosis factor-alpha and -beta and IFN-gamma activity when activated with mitogens or PMA and IL-1. The in vitro functions of these T-cell lines suggest a potential role for alpha/beta double-negative T lymphocytes in tissue injury resembling graft-vs-host disease.  相似文献   

19.
T cells infiltrating (T-TIL) B cell non-Hodgkin's lymphomas (NHL) are thought to represent a local host response to the tumor. However, tumor progression in the presence of this T cell infiltrate suggests that the T-TIL may be functionally impaired. To address this issue we determined whether response to stimulation of T-TIL from 25 patients with NHL through the T cell receptor (TCR/CD3) and the interleukin-2 (IL-2) receptor (IL-2R) was intact, since activation of these receptors is important for proliferation and cytokine production. Our results demonstrate defects in response to stimulation via TCR/CD3 and the IL-2R in T-TIL cells from patients with NHL that were not observed with T cells from the peripheral blood. T-TIL showed minimal proliferation to anti-CD3 and only modest proliferation to IL-2 alone or when combined with anti-CD3. Moreover, cytokine production in T-TIL was impaired since stimulation through the TCR/CD3 complex did not induce mRNA for interferon (IFN), IL-2, IL-4 or IL-10. The functional unresponsiveness of these cells may be linked to altered signalling through the TCR/CD3 since an abnormal tyrosine phosphorylation pattern was detected in T-TIL after stimulation with anti-CD3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号