首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

Cefotaxime (100 mg/l) mitigate occasional gram negative bacterial contamination in wheat and triticale microspore culture and most importantly it increases cell growth and green plant production.

Abstract

Isolated microspore culture is a promising option to rapidly fix the product of meiotic recombination of F1 hybrids, in the process of varietal development. Clean culture and high embryogenesis rate are essential to commercial triticale and wheat microspore cultures. So, this study investigated (1) contaminants from isolated microspores cultures, (2) two antibiotics to control bacterial growth, and (3) the contribution of antibiotics to increased microspore-derived embryo-like structures (ELS), green and albino plants. Five species of bacteria were identified in contaminated cultures (Erwinia aphidicola, Pantoea agglomerans, Pseudomonas sp., Staphylococcus epidermis and Staphylococcus warneri) using fatty acid analysis and 16S ribosomal RNA sequences analysis, and yeast. Antibacterial susceptibility test using Cefotaxime and Vancomycin resulted in strong inhibition of 24 bacterial isolates, using Cefotaxime at 100 mg/l, but not Pseudomonas sp. Other antibiotic treatments inhibited bacterial growth at least partially. Microspore induction medium supplemented with the same antibiotics treatments resulted in successful microspore embryogenesis and green plant production. Antibiotic treatments were first tested in triticale and then validated in wheat cultivars AC Carberry and AC Andrew. Induction medium supplemented with Cefotaxime at 50 and 100 mg/l substantially increased the formation of ELS and green plants in triticale and wheat, respectively. Incidentally, it also affected the occurrence of albinism in all genotypes. Our results demonstrated dual purpose of Cefotaxime for isolated microspore culture, most importantly it increases cell growth and success of microspore cultures in triticale and wheat genotypes, but would also prevent accidental loss of cultures with most common bacterial contaminants.  相似文献   

2.
Microbial contamination is the major cause of economic losses in commercial and scientific plant tissue culture laboratories. For successful micropropagation, it is important to control contamination during in vitro cultures. The present study was designed to isolate, identify and eradicate endophytic contaminants from in vitro cultures of medicinally important plant Fagonia indica. A total of eight distinct bacterial isolates from in vitro grown plantlets of F. indica were selected based on analysis of colony morphology. The endophytic bacterial contaminants identified at the species level through 16S rRNA sequence analysis were Enterobacter xiangfangensis, Bacillus vallismortis, Bacillus tequilensis, Terribacillus halophilus, Pantoea dispersa, Serratia marcescens subsp. Sakuensis, Staphylococcus epidermidis and Bacillus atrophaeus. It was observed that almost 60% of seedlings were contaminated with Bacillus sp. and out of those, Bacillus tequelensis contributed to most infections (70% out of the Bacillus infections). The other most frequently occurring bacteria were Bacillus vallismortis, Terribacillus halophilus and Serratia marcescens subsp. sakuensis. Furthermore, the addition of antimicrobials to the media either completely inhibited or drastically decreased the growth of endophytic bacteria as compared to the control in which 92% of the plantlets were contaminated with these endophytes. Nine different antibiotics (rifampicin, teicoplanin, gentamicin, vancomycin, ciprofloxacin, tobramycin, tetracycline, doxycycline and ampicillin) were tested for their activity against the identified endophytes. Antibiotics such as ciprofloxacin and tobramycin showed a good response and inhibited the growth of all the bacterial isolates at low doses compared to the other antibiotics. Tobramycin was the most effective as it inhibited the growth of five of the bacterial isolates at a dosage as low as 4 mg/L. In case of tetracycline (16 mg/L) and doxycycline (64 mg/L), the contamination frequency in plantlets was 25.6 and 45%, respectively. It is, therefore, important to search for more endophytes, causing adverse effects during in vitro cultures and should devise a feasible anti-microbial strategy for controlling such contamination.  相似文献   

3.
Bacterial contamination represents a serious problem for plant tissue culture research and applications. Bacterial interference with normal plant physiology and morphology can generate misleading conclusions if the presence of bacteria is ignored. Bacterial contaminants in in vitro plant culture are typically detected by direct observation; thus, it is assumed that cultures without visible symptoms are bacteria free. Here, we demonstrate that contaminating Bacillus DNA in plant DNA solutions from asymptomatic plants can interfere with the analysis of somaclonal variation in chrysanthemum. We studied somaclonal variation in chrysanthemum using short semi-specific PCR primers based on conserved motifs in NBS–LRR disease resistance genes and in mobile elements. Instead of true somaclonal variation we found three polymorphic bands derived from contaminant bacterial DNA in plant extracts. Although the detection of asymptomatic bacteria in in vitro plant cultures is a major issue, we found that it has not been adequately addressed to date, particularly for studies on somaclonal variation. We reviewed the most commonly cited contaminant bacteria in in vitro plant culture and designed specific 16S rRNA gene-based PCR primers for the main genera causing contamination (Bacillus, Pseudomonas, Staphylococcus, Lactobacillus, Erwinia/Enterobacter and Xanthomonas). Using a panel of pure bacterial DNAs, artificial mixes of bacterial/plant DNAs, and in vitro plant cultures with and without visible contamination we demonstrated that our primers are in most instances both reliable and sensitive, and appropriate for the identification and tracking of the most frequent bacterial contaminants in plant in vitro cultures. Implications of bacterial identification to molecular analysis of somaclonal variation and plant culture decontamination are discussed.  相似文献   

4.
Meristem-tip cultures of apple rootstock 'YP' were started at different times of the year over a period of 2 years and the contamination of the cultures was monitored during five subcultures. Bacterial contaminants were isolated to pure cultures, identified by the API test system and appropriate additional tests, and the sensitivity of the most common isolates to different antibiotics was determined. Of the 216 strains isolated from the initiation cultures, 78% were pseudomonads, coryneforms or enterobacteria. Only three bacterial contaminants were found at the multiplication stage. A greater part of the contaminants were likely to originate from the stock plant. Rifampicin (at 50–200 mg 1-1) and cefotaxime (at 250–1500 mg 1-1) were found to be bactericidal against many isolates, but differences between species and strains were found.  相似文献   

5.
Summary A wide range of microorganisms (filamentous fungi, yeasts, bacteria, viruses and viroids) and micro-arthropods (mites and thrips) have been identified as contaminants in plant tissue cultures. Contaminant may be introduced with the explant, during manipulations in the laboratory or by micro-arthropod vectors. Contaminants may express themselves immediately or can remain latent for long periods of time. This often makes it difficult to identify the source of contamination. Disinfection protocols have now been developed for a wide range of plant species including those infected with viruses/viroids or endophytic bacteria. They may include the selection of pathogen-free donor plants or donor plant treatments such as thermotherapy. Also microbiological quality assurance systems (e.g. Hazard Analysis Critical Control Point; HACCP procedures) have been adapted to the needs of commercial plant tissue culture laboratories. These are aimed at, preventing the introduction of pathogens, into tissue cultures at establishment and in the laboratory. In established in vitro cultures preventative strategies have proved to be essential, since it is extremely difficult to eliminate environmental bacterial and fungal contaminants using, antibiotics and fungicides. In many cases anti-microbial treatments only inhibit contaminants and low levels of contamination persist. In particular, the use of antibiotics against Gram-negative bacteria (including plant pathogenic bacteria and Agrobacterium tumefaciens vector systems used in genetic engineering) has been shown frequently to be extremely difficult or unsuccessful. Detection of latent contamination may involve the use of general and semi-selective microbial growth media or serological and PCR-based molecular techniques for specific pathogens. However, it is often difficult to detect low numbers of latent bacterial contaminants (e.g. levels present following antibiotic treatment or when acidified plant media are used). This poses a particular risk in the production of transgenic plants where the elimination or detection of Agrobacterium tumefaciens-based vector systems cannot be guaranteed with the currently available methodologies. Recent research has also shown that there is a risk of the transmission of human pathogens in plant tissue cultures.  相似文献   

6.
Bambusa balcooa is an economically important, multipurpose bamboo species, decidedly used in construction industry. Availability of natural bamboo is depleting very rapidly due to accelerated deforestation and its unrestrained use. The large number and timely supply of saplings are the need of the hour for the restoration of bamboo stands. Micropropagation, being the potent alternative for season independent rapid regeneration, is restricted in bamboo because of endophytic contamination. An in vitro attempt has been taken to overcome the endophytic contamination by using broad spectrum antibiotics as surface sterilant as well as a media component. Ampicillin sodium salt (5 mg/ml for 30 min) as a surface sterilant was found as the best treatment for high bud breaking (80%) coupled with high branching and low contamination (20%) but it was found ineffective to control the contamination during multiplication stage. Then, two endophytes were isolated and minimum inhibitory concentration was determined through antibiotic susceptibility test for successful eradication at multiplication stage. Finally, contamination free cultures were obtained when streptocycline (100 μg/ml) and gentamicin sulphate (75 μg/ml) were added into the medium. The two isolated endophytes, BB1 and BB2, were identified through 16S rDNA techniques and NCBI-BLAST algorithm with 99% sequence similarity with those of Janibacter sp. (KX423734) and Serratia marcescens strain (KX423735). To our knowledge, this is the first report for B. balcooa where antibiotics were used as surface sterilant as well as medium component, to control endophytic bacterial contaminants, followed by their identification.  相似文献   

7.
We surveyed mouse microbiological contamination rates by testing rates for common contaminants using serological, culture, and parasitological methods. A total of 21,292 experimentally housed mice from 206 animal facilities, including hospitals, universities, companies, and research institutes, were tested over a 6-year period from 2014 to 2019. The most commonly found contaminants were various species of nonpathogenic protozoa (47.2%). The most common pathogenic bacteria were Staphylococcus aureus (21.2%), Pasteurella pneumotropica (12.5%), and Pseudomonas aeruginosa (5.8%). Mouse hepatitis virus (6.1%) was detected, but no other viral or bacterial pathogens were found. These results establish that the main pathogens that currently contaminate mouse facilities in Korea are opportunistic pathogens and that contamination with important pathogens, such as those in Categories B or C, has decreased.  相似文献   

8.
Agrobacterium transformation systems forBrassica, Solanum andRubus, using carbenicillin, cefotaxime and ticaracillin respectively to eliminate contamination, were examined for the presence of residualAgrobacterium. The results indicated that none of the antibiotics in question, succeeded in eliminatingAgrobacterium and the contamination levels increased in explants from 12 to 16 weeks to such an extent thatSolanum cultures senesced and died. This may be due to the fact that four times the Minimum bactericidal concentration values (concentration to be used for elimination of contaminants in culture), for the three antibiotics, were higher than the concentrations employed in the culture medium. Contamination in shoot material decreased over 16 to 24 weeks possibly due to bacteriostatis and the use only of the apical node for further culture. The presence of the binary vector was also noted under non-selective conditions, even up to 6 months after transformation, where approx. 50% of contaminated material still harboured bacterial cells with the binary vector at levels of approx. 107 Colony forming units per gram.  相似文献   

9.
Bacterial contamination is a serious problem that causes severe loss of in vitro grown cultures of a number of plants. This problem becomes even more acute if the bacterial contamination is of endophytic origin. In such cases, identification and characterization of the contaminants is essential for achieving specific control of the contaminants through selective use of antibiotic agents, especially if the routinely used contamination control methods practiced elsewhere in tissue culture studies are ineffective. Such is the case with the bacterial contamination observed in the present study. The five endophytic bacteria associated with Piper nigrum and Piper colubrinum, four endophytic bacteria associated with Taxus baccata subsp. wallichiana, two endophytic bacteria associated with Withania somnifera, and two bacteria common to all these plant species were isolated and characterized based on morphological and biochemical tests. Their taxonomic positions based on similarity indices were determined. A control strategy against these bacteria has been developed based on bacteriostatic or bactericidal actions of 12 antibiotics at three different concentrations by solid and liquid antibiogramme assays.  相似文献   

10.
Bacterial and fungal contaminants of enset (Ensete ventricosum) cultures and microbes associated with surface-sterilized field material were identified by 16S/26S rDNA sequencing. Ten bacterial species were identified in 16 isolates from in vitro cultures and seven in 10 isolates from field clones. Three yeast species and one filamentous fungus were recorded as in vitro contaminants, whereas five yeast species were isolated from the field material. The bacterium, Pseudomonas reactans (6 isolates), and the yeast, Torulaspora delbrueckii (8 isolates), were the most frequent in vitro contaminants. Most of the bacterial species isolated from in vitro enset were Gram-positive and hitherto unrecorded as in vitro contaminants. The difficulty in controlling the in vitro contaminants is due to their apparent endogenous nature and their resistance to antimicrobial drugs.  相似文献   

11.
In this study, we present a novel method to isolate and enrich low concentrations of Campylobacter pathogens. This method, Acanthamoeba-Campylobacter coculture (ACC), is based on the intracellular survival and multiplication of Campylobacter species in the free-living protozoan Acanthamoeba polyphaga. Four of the Campylobacter species relevant to humans and livestock, Campylobacter jejuni, C. coli, C. lari, and C. hyointestinalis, were effectively enriched by the coculture method, with growth rates comparable to those observed in other Campylobacter enrichment media. Studying six strains of C. jejuni isolated from different sources, we found that all of the strains could be enriched from an inoculum of fewer than 10 bacteria. The sensitivity of the ACC method was not negatively affected by the use of Campylobacter-selective antibiotics in the culture medium, but these were effective in suppressing the growth of seven different bacterial species added at a concentration of 104 CFU/ml of each species as deliberate contamination. The ACC method has advantages over other enrichment methods as it is not dependent on a microaerobic milieu and does not require the use of blood or other oxygen-quenching agents. Our study found the ACC method to be a promising tool for the enrichment of Campylobacter species, particularly from water samples with low bacterial concentrations.  相似文献   

12.
Endogenous bacterial contaminants isolated from infected cultures of Ilex dumosa nodal segments were identified as Stenotrophomonas maltophilia and Achromobacter sp. using 16S rDNA analysis. A range of antibiotics with different mechanism of actions and the commercial biocide PPM™ were tested for their capacity to repress the growth of Gram negative bacteria grown in liquid medium during the establishment phase of temporal immersion systems. The best results were obtained with the addition of 0.5 mg ml−1 cefotaxime to the culture media obtaining 100% of uncontaminated cultures without suppress of shoot growth.  相似文献   

13.
Bacterial contamination of commercial fermentation cultures is a common and costly problem to the fuel ethanol industry. Antimicrobials such as virginiamycin (VIR) and penicillin (PEN) are frequently used to control contamination but there are little data available on the susceptibility of bacterial contaminants to these agents. A survey of bacterial contaminants from a wet-mill ethanol plant with no history of using antibiotics and a dry-grind facility that periodically doses with VIR found that the majority of contaminants were species of Lactobacillus. Thirty-seven isolates of Lactobacillus species from the wet-mill and 42 isolates from the dry-grind facility were tested for antimicrobial susceptibility using broth dilution and agar dilution methods. In general, the Lactobacillus isolates from the dry-grind plant had higher minimum inhibitory concentrations (MICs) for the tested agents than the isolates from the wet-mill facility. The MIC90 for VIR was 4 μg/ml for the dry-grind isolates versus 0.25 μg/ml for the wet-mill isolates; and for PEN, the MIC90’s were >8 and 2 μg/ml for the dry-grind and wet-mill isolates, respectively. Sixteen Lactobacillus isolates from the dry-grind plant but none from the wet-mill possessed vatE, a gene that encodes a streptogramin acetyltransferase associated with resistance to virginiamycin. Despite decreased susceptibility to virginiamycin, most dry-grind isolates had MICs lower than the maximal recommended application rate of 6 ppm. Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

14.
Mycoplasma isolates were cultured from 15 antibiotic-free cell cultures obtained from a single laboratory. Complement-fixation tests showed that these isolates were antigenically related to each other but were unrelated to M. hominis type 1, M. hominis type 2, M. arthritidis, M. laidlawii type B, Mycoplasma sp. H.Ep. #2 (Barile), or M. salivarium. Examination of serum used to feed the infected cell lines revealed no Mycoplasma. Infection resulting from cross-contamination by a single Mycoplasma strain from one cell culture to another was investigated. Although the organisms were not found in the air over the work area, aerosols containing these contaminants were produced in tissue culture bottles during the trypsinization of cell monolayers. The minimal infectious dose of Mycoplasma for tissue cultures was measured, and it was determined that one organism was capable of initiating an infection in a tissue culture. The pattern of contamination and the small dose required for infection indicated that Mycoplasma contamination was spread from one tissue culture to another via aerosols. It was demonstrated that Mycoplasma can be transferred from one cell culture to another through the use of a common burette for dispensing medium.  相似文献   

15.
Bacteriological Evaluation of an Ultra-Pure Water-Distilling System   总被引:2,自引:0,他引:2       下载免费PDF全文
A prototype distillation and storage system with recycle for producing ultrapure water was monitored for bacteriological contamination during a period of 24 months. Naturally occurring Pseudomonas aeruginosa and P. cepacia were found to grow rapidly to levels of about 105/ml in water taken from the storage reservoir and also in commercially prepared distilled water. The system was found to eliminate bacterial contaminants introduced into the still with the feed water, but the reservoir, once contaminated, remained contaminated during prolonged recycle. After a single treatment with free chlorine, the entire system remained uncontaminated until accidental or purposeful shutdown.  相似文献   

16.
Summary Curative treatments with antibiotics and hen egg white lysozyme (HEWL) were used to salvage embryo cultures contaminated withBaccillus subtilis. The use of HEWL gave good control ofBaccillus subtilis, but no control ofErwinia. HEWL was better than antibiotics, being much less phytotoxic. The antibiotics piperacillin, ampicillin and imipenem were also found to be ineffective againstErwinia. HEWL, at a final concentration of 1 mg per mL, was used as a preventive and curative agent for routine use in embryo culture ofTriticum aestivum and other Triticeae, as it cured from 30% to 50% of bacterial contamination problems over a one year period. Standardin vitro culture precautions remained essential, as certain bacteria were not controlled by HEWL.  相似文献   

17.
Several cultivars of hybrid seed geranium (Pelargonium×hortorum Bailey), previously shown to be recalcitrant in culture, produced somatic embryos at high frequency when explants were co-cultivated with a morphogenesis promoting bacterium. This bacterium was isolated as an in vitro contaminant from cultures of geranium seedling explants and identified as belonging to the genus Bacillus and species circulans. Co-cultivation of hypocotyl explants with the bacterium promoted somatic embryo formation and improved both the frequency and quality of somatic embryos. In the cultivar Ringo Rose, the least responsive among the cultivars screened, the embryogenic response was more than four times that of axenic cultures. Nearly 70% of these embryos converted into plantlets, while the somatic embryos induced under axenic conditions developed poorly and plantlet formation was inconsistent. Among the different treatments of bacterial culture tested (autoclaved culture, culture filtrate, sonicated bacterial culture, sonication of bacterial culture followed by filtration, HPLC fractionation of crude bacterial lysate), only two HPLC fractions promoted embryogenesis to a marginal degree. Co-cultivation of the explants with bacterium during the first week of induction was crucial for obtaining high-frequency embryogenesis, indicating the role of bacterial stimuli during the induction process. Received: 23 June 1998 / Revision received: 20 August 1998 / Accepted: 27 October 1998  相似文献   

18.
In this study, we describe our results on the evaluation of the ability of different permissive mammalian cell lines to support the biological enrichment of mycoplasma species known to be bacterial contaminants of cell substrates. The study showed that this approach is able to significantly improve the efficiency of mycoplasma detection based on nucleic acid testing or biochemical technologies (e.g., MycoAlert mycoplasma detection). Of 10 different cell lines (Vero, MDBK, HEK-293, Hep-G2, CV-1, EBTr, WI-38, R9ab, MDCK, and High Five) used in the study, only MDCK cell culture was found to support the efficient growth of all the tested mycoplasmas (Mycoplasma arginini, M. bovis, M. fermentans, M. gallinaceum, M. gallisepticum, M. synoviae, M. hominis, M. hyorhinis, M. orale, M. salivarium, and Acholeplasma laidlawii) known to be most frequently associated with contamination of cell substrates and cell lines in research laboratories or manufacturing facilities. The infection of MDCK cells with serial dilutions of each mycoplasma species demonstrated that these common cell line contaminants can be detected reliably after 7-day enrichment in MDCK cell culture at contamination levels of 0.05 to 0.25 CFU/ml. The High Five insect cell line was also found to be able to support the efficient growth of most mycoplasma species tested, except for M. hyorhinis strain DBS1050. However, mycoplasma growth in insect cell culture was demonstrated to be temperature dependent, and the most efficient growth was observed when the incubation temperature was increased from 28°C to between 35 and 37°C. We believe that this type of mycoplasma enrichment is one of the most promising approaches for improving the purity and safety testing of cell substrates and other cell-derived biologics and pharmaceuticals.  相似文献   

19.
Very little is known of the microflora in tortillas, the major component in the diet of many Guatemalans and other Central Americans. Based in a Guatemalan highland Indian village, this study examined the types and amounts of bacteria, yeasts, and molds in tortillas and in their maize precursors. Coliforms. Bacillus cereus, two species of Staphylococcus, and many types of yeast were the main contaminants, but low concentrations of alpha-hemolytic Streptococcus, facultative Clostridium, and other bacterial types were also found. When tortillas were first cooked, the bacterial counts dropped to 1,000 or fewer organisms per g, a safe level for consumption. Under village conditions, bacterial counts regained precooking levels (about 108 organisms/g) within 24 h and rose even higher after 48 h. Reheating caused very little change; hence, bacterial levels remained very high in old tortillas kept for later consumption. A search for the sources of contamination showed that most came from water used in preparation and from the soiled hands of women preparing the tortillas. As an attempt to correct certain nutritional needs of the population, the Institute of Nutrition for Central America and Panama initiated a tortilla fortification project in the Guatemalan village. The bacterial counts in fortified tortillas did not differ significantly from those in ordinary tortillas. Furthermore, the level of contamination was constant among tortillas of different sizes and among tortillas made from different types of maize.  相似文献   

20.
Naja atra is a major venomous snake found in Taiwan. The bite of this snake causes extensive wound necrosis or necrotizing soft tissue infection. Conventional microbial culture-based techniques may fail to identify potential human pathogens and render antibiotics ineffective in the management of wound infection. Therefore, we evaluated 16S Sanger sequencing and next-generation sequencing (NGS) to identify bacterial species in the oropharynx of N. atra. Using conventional microbial culture methods and the VITEK 2 system, we isolated nine species from snakebite wounds. On the basis of the 16S Sanger sequencing of bacterial clones from agar plates, we identified 18 bacterial species in the oropharynx of N. atra, including Morganella morganii, Proteus vulgaris, and Proteus mirabilis, which were also present in the infected bite wound. Using NGS of 16S metagenomics, we uncovered more than 286 bacterial species in the oropharynx of N. atra. In addition, the bacterial species identified using 16S Sanger sequencing accounted for only 2% of those identified through NGS of 16S metagenomics. The bacterial microbiota of the oropharynx of N. atra were modeled better using NGS of 16S metagenomics compared to microbial culture-based techniques. Stenotrophomonas maltophilia, Acinetobacter baumannii, and Proteus penneri were also identified in the NGS of 16S metagenomics. Understanding the bacterial microbiota that are native to the oropharynx of N. atra, in addition to the bite wound, may have additional therapeutic implications regarding empiric antibiotic selection for managing N. atra bites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号