首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil is the largest carbon reservoir in terrestrial ecosystems; it stores twice as much carbon as the atmosphere. It is well documented that global warming can lead to accelerated microbial decomposition of soil organic carbon (SOC) and enhance the release of CO2 from the soil to the atmosphere; however, the magnitude and timing of this effect remain highly uncertain due to a lack of quantitative data concerning the heterogeneity of SOC biodegradability. Therefore, we sought to identify SOC pools with respect to their specific mean residence times (MRTs), to use those SOC pools to partition soil respiration sources, and to estimate the potential response of the pools to warming. We collected surface soil and litter samples from a cool-temperate deciduous forest in Japan, chemically separated the samples into SOC fractions, estimated their MRTs based on radiocarbon (14C) isotope measurements, and used the data to construct a model representing the soil as a complex of six SOC pools with different MRT ranges. We estimate that a minor, fast-cycling SOC pool with an MRT of less than 10 years (corresponding to the O horizon and recognizable plant leaf fragments in the A1 horizon) is responsible for 73% of annual heterotrophic respiration and 44% of total soil respiration. However, the predicted response of these pools to warming demonstrates that the rate of SOC loss from the fast-cycling SOC pool diminishes quickly (within several decades) because of limited substrate availability. In contrast, warming will continue to accelerate SOC loss from slow-cycling pools with MRTs of 20–200 years over the next century. Although using a 14C-based approach has drawbacks, these estimates provide quantitative insights into the potential importance of slow-cycling SOC dynamics for the prediction of positive feedback to climate change.  相似文献   

2.
Nitrogen (N) availability has been considered as a critical factor for the cycling and storage of soil organic carbon (SOC), but effects of N enrichment on the SOC pool appear highly variable. Given the complex nature of the SOC pool, recent frameworks suggest that separating this pool into different functional components, for example, particulate organic carbon (POC) and mineral-associated organic carbon (MAOC), is of great importance for understanding and predicting SOC dynamics. Importantly, little is known about how these N-induced changes in SOC components (e.g., changes in the ratios among these fractions) would affect the functionality of the SOC pool, given the differences in nutrient density, resistance to disturbance, and turnover time between POC and MAOC pool. Here, we conducted a global meta-analysis of 803 paired observations from 98 published studies to assess the effect of N addition on these SOC components, and the ratios among these fractions. We found that N addition, on average, significantly increased POC and MAOC pools by 16.4% and 3.7%, respectively. In contrast, both the ratios of MAOC to SOC and MAOC to POC were remarkably decreased by N enrichment (4.1% and 10.1%, respectively). Increases in the POC pool were positively correlated with changes in aboveground plant biomass and with hydrolytic enzymes. However, the positive responses of MAOC to N enrichment were correlated with increases in microbial biomass. Our results suggest that although reactive N deposition could facilitate soil C sequestration to some extent, it might decrease the nutrient density, turnover time, and resistance to disturbance of the SOC pool. Our study provides mechanistic insights into the effects of N enrichment on the SOC pool and its functionality at global scale, which is pivotal for understanding soil C dynamics especially in future scenarios with more frequent and severe perturbations.  相似文献   

3.
植物凋落物碳输入显著影响陆地生态系统土壤CO2排放和有机碳(SOC)形成,然而,针对不同质地土壤添加不同化学结构外源碳去向依然不清楚。本研究将13C标记的葡萄糖、淀粉和纤维素添加至红壤和风沙土,比较2种质地土壤添加不同化学结构外源碳在土壤释放的CO2、SOC、可溶性有机碳(DOC)和微生物生物量碳(MBC)库的净累积量、回收率及贡献比例上的差异。结果表明: 添加外源有机碳显著提高了CO2、SOC、DOC和MBC的δ13C值,且随着外源有机碳化学结构复杂性的增加,CO2的δ13C峰值依次延迟出现;外源有机碳种类、土壤类型和培养时间均显著改变外源碳去向及其在各碳库的贡献比例;在风沙土中,外源有机碳更多被矿化为CO2,且CO2库的外源碳净累积量和回收率大小依次为葡萄糖>淀粉>纤维素;红壤添加外源碳转变为SOC的累积量和回收率显著高于风沙土,且红壤SOC库的外源碳净累积量和回收率大小顺序也为葡萄糖>淀粉>纤维素。可见,外源有机碳化学结构和土壤质地共同调控外源碳去向及累积贡献。  相似文献   

4.
Aggregation dynamics and soil organic carbon (SOC) fractions collected from long-term tillage trials at two sites in Illinois were used to develop a model to simulate the aggregate dynamics and physical protection of SOC. We used two litter pools which are surface litter and root litter and three SOC pools which are directly measurable from the fractionation: loose particulate organic matter (LPOM), aggregate-occluded particulate organic matter (OPOM), and humified fractions (HF). Decay rates of all of five pools were modified by soil temperature and moisture. In the model, the decay rate of LPOM was not influenced by any type of physical protection and the OPOM decay rate was influenced by dry aggregate mean weight diameter (DMWD) size. The effect of DMWD on OPOM decay rate was expressed as logistic equation based on the threshold value beyond which OPOM decay rate was influenced by the reactive mass concept which is that it is primarily outer layer of aggregates that participates in chemical and biological reactions. The decay of HF was influenced by clay contents. The relative aggregate turnover modified the humification coefficients. The faster aggregate turnover speeded the carbon transfer from LPOM to OPOM by providing more chances for organic matter to be incorporated with macroaggregates and retarded carbon transfer from OPOM to HF due to the fact that there is not enough time for organic mater to be associated with microaggregates and clay particles. Simulated results were compared against actual SOC fraction contents obtained from two long-term tillage trials located in Illinois, DeKalb (silty clay loam) and Monmouth (silt loam). Both actual and simulated data showed that after 10 and 17 years of no tillage (NT) practice adoption, OPOM content was increased at the surface in Monmouth and HF content was increased at the surface in DeKalb. Agreement between the output of aggregate dynamics-based model and actual data suggested that DMWD size, relative aggregate turnover, and their interaction with soil moisture and clay contents can be used to predict the inconsistent effects of tillage practices on SOC sequestration.  相似文献   

5.
小兴安岭两种森林类型土壤有机碳库及周转   总被引:1,自引:0,他引:1  
高菲  姜航  崔晓阳 《生态学杂志》2015,26(7):1913-1920
采用室内培养法测定了不同温度下(8、18、28 ℃)小兴安岭原始阔叶红松林和阔叶次生林土壤有机碳的矿化速率和矿化量,并用三库一级动力学模型对有机碳各库进行拟合.结果表明: 基于单位干土质量的阔叶次生林土壤有机碳矿化速率和累计矿化量均大于原始红松林,但有机碳累计矿化量占总有机碳的比率小于原始红松林.2种森林类型土壤活性碳库和缓效碳库随土层加深而减小,其占总有机碳的比例增加.尽管阔叶次生林土壤活性和缓效碳库均大于原始红松林,但其占总有机碳的比例却小于原始红松林,而土壤惰性碳库及其比例均大于原始红松林,表明阔叶次生林土壤有机碳整体上更稳定.土壤活性碳库平均驻留时间(MRT)为9~24 d,且随土层加深而缩短,而缓效碳库MRT为7~42 a,且随土层加深而延长.土壤活性碳库及其占总有机碳的比例随温度升高而线性增加,缓效碳库则降低;原始红松林土壤活性碳随温度的增速大于阔叶次生林,表明原始红松林土壤有机碳库对温度变化反应更敏感.  相似文献   

6.
Input of labile organic carbon can enhance decomposition of extant soil organic carbon (SOC) through priming. We hypothesized that long‐term nitrogen (N) input in different chemical forms alters SOC pools by altering priming effects associated with N‐mediated changes in plants and soil microbes. The hypothesis was tested by integrating field experimental data of plants, soil microbes and two incubation experiments with soils that had experienced 10 years of N enrichment with three chemical forms (ammonium, nitrate and both ammonium and nitrate) in an alpine meadow on the Tibetan Plateau. Incubations with glucose–13C addition at three rates were used to quantify effects of exogenous organic carbon input on the priming of SOC. Incubations with microbial inocula extracted from soils that had experienced different long‐term N treatments were conducted to detect effects of N‐mediated changes in soil microbes on priming effects. We found strong evidence and a mechanistic explanation for alteration of SOC pools following 10 years of N enrichment with different chemical forms. We detected significant negative priming effects both in soils collected from ammonium‐addition plots and in sterilized soils inoculated with soil microbes extracted from ammonium‐addition plots. In contrast, significant positive priming effects were found both in soils collected from nitrate‐addition plots and in sterilized soils inoculated with soil microbes extracted from nitrate‐addition plots. Meanwhile, the abundance and richness of graminoids were higher and the abundance of soil microbes was lower in ammonium‐addition than in nitrate‐addition plots. Our findings provide evidence that shifts toward higher graminoid abundance and changes in soil microbial abundance mediated by N chemical forms are key drivers for priming effects and SOC pool changes, thereby linking human interference with the N cycle to climate change.  相似文献   

7.
Soil organic matter (SOM) is heterogeneous in structure and has been considered to consist of various pools with different intrinsic turnover rates. Although those pools have been conceptually expressed in models and analyzed according to soil physical and chemical properties, separation of SOM into component pools is still challenging. In this study, we conducted inverse analyses with data from a long-term (385 days) incubation experiment with two types of soil (from plant interspace and from underneath plants) to deconvolute soil carbon (C) efflux into different source pools. We analyzed the two datasets with one-, two- and three-pool models and used probability density functions as a criterion to judge the best model to fit the datasets. Our results indicated that soil C release trajectories over the 385 days of the incubation study were best modeled with a two-pool C model. For both soil types, released C within the first 10 days of the incubation study originated from the labile pool. Decomposition of C in the recalcitrant pool was modeled to contribute to the total CO2 efflux by 9–11 % at the beginning of the incubation. At the end of the experiment, 75–85 % of the initial soil organic carbon (SOC) was modeled to be released over the incubation period. Our modeling analysis also indicated that the labile C-pool in the soil underneath plants was larger than that in soil from interspace. This deconvolution analysis was based on information contained in incubation data to separate carbon pools and can facilitate integration of results from incubation experiments into ecosystem models with improved parameterization.  相似文献   

8.
因耕作和侵蚀的共同作用,农田坡地景观多为坡上侵蚀、坡下沉积的空间格局,同时伴随侵蚀区和沉积区土壤有机碳(SOC)含量及稳定机制的差异.为探明长期耕作的农田黑土有机碳库积累-损耗特征,采用Stewart物理-化学联合分组方法,以典型黑土区不同开垦年限坡耕地为研究对象,探讨基于侵蚀-沉积作用的不同稳定机制碳库(游离未保护碳、物理保护碳、化学保护碳、生物化学保护碳)的分配特征.结果表明: 长期耕作与侵蚀导致坡下沉积区显著富积SOC,4种碳库含量整体表现为沉积区显著大于侵蚀区;黑土区坡耕地SOC以化学保护碳库和生物化学保护碳库为主(>90%),侵蚀区主要积累化学保护有机碳(84.6%),沉积区主要积累生物化学保护有机碳(51.4%);随着开垦年限的延长,4种碳库积累速率随着碳稳定程度的增加而增加,为生物化学保护碳库(48%)>化学保护碳库(42.2%)>物理保护碳库(6.4%)>游离未保护碳库(3.4%);游离未保护有机碳库占比和积累速率最小,但其对外界干扰最敏感,在黑土管理过程中应引起足够重视.  相似文献   

9.
不同蔬菜种植方式对土壤固碳速率的影响   总被引:2,自引:0,他引:2  
近年来蔬菜地面积快速增加已成为我国农田土壤碳库变化的重要驱动因素,研究蔬菜种植方式对农田土壤固碳影响,对于揭示我国农田土壤碳库变化具有重要意义。通过实地调查与采样分析,研究了山东省苍山县3种蔬菜种植方式(大田种植、季节性大棚和长年性大棚种植)对农田土壤固碳速率影响及其随种植时间的变化规律。结果表明,3种种植方式下蔬菜地土壤有机碳含量均随种植时间的增加而增加;长年性大棚、季节性大棚和大田种植方式下0—100 cm土层土壤平均固碳速率分别达到1.44、2.73、1.60 Mg.hm-2.a-1;表层土壤(0—20 cm)平均固碳速率依次为0.64 Mg.hm-2.a-1、0.36 Mg.hm-2.a-1、0.20Mg.hm-2.a-1,3种蔬菜种植方式的土壤固碳速率存在显著差异。同样为蔬菜地,选择合理种植方式是提高农田土壤固碳速率的重要途径。  相似文献   

10.
Microbial metabolic products play a vital role in maintaining ecosystem multifunctionality, such as soil physical structure and soil organic carbon (SOC) preservation. Afforestation is an effective strategy to restore degraded land. Glomalin-related soil proteins (GRSP) and amino sugars are regarded as stable microbial-derived C, and their distribution within soil aggregates affects soil structure stability and SOC sequestration. However, the information about how afforestation affects the microbial contribution to SOC pools within aggregates is poorly understood. We assessed the accumulation and contribution of GRSP and amino sugars within soil aggregates along a restoration chronosequence (Bare land, Eucalyptus exserta plantation, native species mixed forest, and native forest) in tropical coastal terraces. Amino sugars and GRSP concentrations increased, whereas their contributions to the SOC pool decreased along the restoration chronosequence. Although microaggregates harbored greater microbial abundances, amino sugars and GRSP concentrations were not significantly affected by aggregate sizes. Interestingly, the contributions of amino sugars and GRSP to SOC pools decreased with decreasing aggregate size which might be associated with increased accumulation of plant-derived C. However, the relative change rate of GRSP was consistently greater in all restoration chronosequences than that of amino sugars. The accumulation of GRSP and amino sugars in SOC pools was closely associated with the dynamics of soil fertility and the microbial community. Our findings suggest that GRSP accumulates faster and contributes more to SOC pools during restoration than amino sugars did which was greatly affected by aggregate sizes. Afforestation substantially enhanced soil quality with native forest comprising species sequestering more SOC than the monoculture plantation did. Such information is invaluable for improving our mechanistic understanding of microbial control over SOC preservation during degraded ecosystem restoration. Our findings also show that plantations using arbuscular mycorrhizal plants can be an effective practice to sequester more soil carbon during restoration.  相似文献   

11.
Long‐term carbon (C) cycle feedbacks to climate depend on the future dynamics of soil organic carbon (SOC). Current models show low predictive accuracy at simulating contemporary SOC pools, which can be improved through parameter estimation. However, major uncertainty remains in global soil responses to climate change, particularly uncertainty in how the activity of soil microbial communities will respond. To date, the role of microbes in SOC dynamics has been implicitly described by decay rate constants in most conventional global carbon cycle models. Explicitly including microbial biomass dynamics into C cycle model formulations has shown potential to improve model predictive performance when assessed against global SOC databases. This study aimed to data‐constrained parameters of two soil microbial models, evaluate the improvements in performance of those calibrated models in predicting contemporary carbon stocks, and compare the SOC responses to climate change and their uncertainties between microbial and conventional models. Microbial models with calibrated parameters explained 51% of variability in the observed total SOC, whereas a calibrated conventional model explained 41%. The microbial models, when forced with climate and soil carbon input predictions from the 5th Coupled Model Intercomparison Project (CMIP5), produced stronger soil C responses to 95 years of climate change than any of the 11 CMIP5 models. The calibrated microbial models predicted between 8% (2‐pool model) and 11% (4‐pool model) soil C losses compared with CMIP5 model projections which ranged from a 7% loss to a 22.6% gain. Lastly, we observed unrealistic oscillatory SOC dynamics in the 2‐pool microbial model. The 4‐pool model also produced oscillations, but they were less prominent and could be avoided, depending on the parameter values.  相似文献   

12.
Soil organic matter models are widely used to study soil organic carbon (SOC) dynamics. Here, we used the CENTURY model to simulate SOC in wheat-corn cropping systems at three long-term fertilization trials. Our study indicates that CENTURY can simulate fertilization effects on SOC dynamics under different climate and soil conditions. The normalized root mean square error is less than 15% for all the treatments. Soil carbon presents various changes under different fertilization management. Treatment with straw return would enhance SOC to a relatively stable level whereas chemical fertilization affects SOC differently across the three sites. After running CENTURY over the period of 1990–2050, the SOC levels are predicted to increase from 31.8 to 52.1 Mg ha−1 across the three sites. We estimate that the carbon sequestration potential between 1990 and 2050 would be 9.4–35.7 Mg ha−1 under the current high manure application at the three sites. Analysis of SOC in each carbon pool indicates that long-term fertilization enhances the slow pool proportion but decreases the passive pool proportion. Model results suggest that change in the slow carbon pool is the major driver of the overall trends in SOC stocks under long-term fertilization.  相似文献   

13.
不同熟化措施对黑土母质发育的新成土壤有机碳库的影响   总被引:1,自引:0,他引:1  
基于8年田间定位试验,采用土壤团聚体分组和闭蓄态微团聚体分离技术,将土壤有机质分为总粗颗粒有机质(活性碳库)、总细颗粒有机质(慢性碳库)和总粉黏粒(惰性碳库) 3个组分,探讨不同熟化措施对黑土母质发育而成的新成土壤总有机碳库及不同活性有机碳库的影响,为黑土严重侵蚀地区母质表露后土壤肥力的快速恢复提供依据。试验设置自然恢复(NatF)、苜蓿种植(Alfa)、无肥(F0C0)、化肥(F1C0)、低量有机肥与化肥配施(F1C1)、高量有机肥与化肥配施(F1C2)等6个熟化处理。结果表明:黑土母质经过8年不同熟化处理后,土壤总有机碳和各组分有机碳含量均显著提高;与NatF相比,有机肥与化肥配施(F1C2和F1C1)对土壤总有机碳的提升作用最为明显,增幅分别为60.7%和41.2%;Alfa其次,增幅18. 2%;F0C0或F1C0处理土壤总有机碳与NatF间无显著差异;F1C2和F1C1处理土壤3个组分有机碳含量均显著高于其他熟化处理,与F1C1相比,F1C2处理对各组分有机碳提升作用更为明显;与NatF相比,Alfa处理土壤有机碳的增加主要表现为粉黏粒结合有机碳的增加;F1C0和F0C0处理土壤总细颗粒有机质和总粉黏粒中有机碳与NatF间无显著差异,总粗颗粒有机质中有机碳含量低于NatF。研究表明,在米豆轮作和传统耕作体系下,农田生态系统高量有机物料投入配施化肥能够加速黑土母质的熟化进程,快速提高土壤中活性碳库和惰性碳库的容量,是严重退化黑土有机质快速提升的有效措施。  相似文献   

14.
长三角典型水稻土有机碳组分构成及其主控因子   总被引:4,自引:0,他引:4  
王玺洋  于东升  廖丹  潘剑君  黄标  史学正 《生态学报》2016,36(15):4729-4738
准确把握水稻土有机碳组分构成特征及其主控因子,对定量化评价土壤有机碳质量和未来演变趋势具有重要意义。通过室内土壤呼吸培养实验结合有机碳三库一级动力学方程,模拟得到长三角地区典型水稻土剖面(0—100 cm)各土层有机碳组分含量及其分布特征;并利用主成分分析获取主控因子,建立有机碳组分回归预测模型。结果表明:水稻土活性碳、慢性碳和惰性碳含量随剖面深度增加而降低,上层土壤(0—40 cm)有机碳组分含量下降速度明显快于下层土壤(40—100 cm);水稻土活性碳构成比例不超过5.3%,惰性碳构成比例大于活性碳与慢性碳比例之和,达到60%以上,水稻土有机碳总量变异主要取决于慢性碳和惰性碳组分变异。因此,水稻土固碳重点在于慢性和惰性组分。同时,研究还发现水稻土类型和剖面深度主要在表层对有机碳组分含量和比例构成产生显著影响,土壤有机碳量、全氮和pH是影响水稻土有机碳组分含量分异的主控因子,利用主控因子可较好预测水稻土有机碳组分含量。  相似文献   

15.
鼎湖山森林土壤活性碳及惰性碳沿海拔梯度的变化   总被引:6,自引:0,他引:6  
向慧敏  温达志  张玲玲  李炯 《生态学报》2015,35(18):6089-6099
对鼎湖山3个不同海拔高度下的沟谷雨林(LA)、低地常绿阔叶林(MA)和山地常绿阔叶林(UA)的土壤活性碳库和惰性碳库进行了研究。结果表明:(1)土壤总碳库仅在30—45 cm土层中存在显著差异且碳库大小随着海拔的增加而增加。(2)土壤微生物生物量碳(MBC)碳库在0—15 cm是LA和MA显著大于UA,在30—45 cm是MA和UA显著高于LA,在45—60 cm土层中MA最大。水溶性碳(WSOC)和颗粒碳(POC)碳库均不随海拔高度而改变。WSOC碳库占总碳库的百分比仅在30—45cm土层中存在差异且大小顺序为:LAUAMA,POC碳库占总碳库的百分比仅在土层15—30 cm上存在显著差异且MA比值最大。易氧化性碳(ROC)碳库及占总碳库百分比都是在表层土壤(0—15 cm)中产生显著变化,且UA极显著地大于LA和MA。(3)惰性碳(RC)碳库仅在深层土壤中存在显著差异且MA中RC碳库最大,UA次之,LA最小。RC碳库占总碳库比值仅在表层土壤0—15 cm存在显著差异且UA最大。表层土壤中ROC碳库和RC碳库占总碳库百分比的增加是导致中高海拔森林土壤总碳库最大的主要原因。(4)不同海拔高度上森林土壤理化性质与土壤碳库组成存在显著相关,土壤理化性质的改变是引起不同海拔高度森林土壤碳库组成变化的重要原因。  相似文献   

16.
通过监测绿洲滴灌棉田不同秸秆管理和施肥方式下土壤有机碳库及碳库组分的变化,可揭示农田管理措施对棉田土壤有机碳库的调节机制,为干旱区提高农田土壤生产力以及农业固碳减排措施的制定提供科学依据.试验采用裂区设计,以秸秆还田(S)和秸秆不还田(NS)2种秸秆管理方式为主区,4种施肥处理为副区:包括不施肥(CK)、单施氮磷钾化肥(NPK)、单施有机肥(OM)和氮磷钾化肥与有机肥混施(NPK+OM).结果表明: 施肥和秸秆还田均显著增加了土壤有机碳库,提高了有机碳(CT)、易氧化有机碳(CL)、微生物生物量碳(CMB)、水溶性有机碳(CWS)、热水溶性有机碳(CHWS)的含量和有机碳累计矿化量(CTM)及碳库管理指数(CMI).秸秆还田较秸秆不还田土壤有机碳库提高了20.6%;处理NPK、OM、NPK+OM分别较CK提高了7.8%、29.5%、37.7%.不同施肥处理下CT、CL、CMB、CWS、CHWS均表现为NPK+OM>OM>NPK>CK.秸秆还田较秸秆不还田CTM提高了5.9%;NPK、OM、NPK+OM处理较CK分别提高了32.7%、59.5%、97.3%.对CMI与SOC及其组分间的相关性分析表明,CMI与CT、CMB、CL、CWS、CHWS、CTM、C库、固碳潜力均呈极显著相关关系,因此, CMI是评价绿洲棉田管理措施对土壤质量影响的重要指标.在干旱区建设高标准绿洲农田,发展棉花生产,采用秸秆还田和有机无机肥配施等农业技术措施,不仅能增加土壤有机碳及活性组分的含量,培肥地力,而且能促进土壤固碳,有利于农业资源高效利用和可持续发展.  相似文献   

17.
环渤海地区土壤有机碳库及其空间分布格局的研究   总被引:16,自引:4,他引:16  
土壤碳库的研究和管理以及土地利用变化对土壤碳库的影响已成为全球变化研究中的核心内容.本文利用第2次土壤普查时环渤海地区1374个土壤剖面资料,对该地区土壤有机碳库进行了估算,结果表明,整个环渤海地区1m深的土壤有机碳库为2.1PgC.进一步分析该区域各土壤类型的有机碳库发现,棕壤的有机碳库最大,占该区域总有机碳库的55.6%,其次为潮土,占26.9%,风沙土和暗棕壤的土壤有机碳库则很小,仅占0.1%以下.对不同土壤类型的碳密度比较发现,沼泽土的碳密度最高,为22.9kgC·m-2,其次是暗棕壤,为16.04kgC·m-2;而风沙土的碳密度最低,为2.88kgC·m-2,再次是盐土,为6.0kgC·m-2.可见土地风沙化和盐碱化将极大地降低土壤的有机碳.此外,该地区表层土壤中的碳储量为673.30TgC,即约占总碳储量三分之一的土壤碳易受人类活动的影响.该地区土壤有机碳的水平分布主要为沿海地区、平原地区、西北部地区和山地丘陵区4个区域,其碳密度由大到小依次为山地丘陵区(森林)>西北部地区(农牧区)>平原地区(农业)>沿海地区(裸地).其分布规律不仅在一定程度上体现了气候和地形等因素的作用,而且充分反映了不同人类活动强度对土壤有机碳的影响.因此,加强该区域土地的保护和管理对于维护土壤有机碳和土地的持续利用极其重要.  相似文献   

18.
There are few data, but diametrically opposed opinions, about the impacts of forest logging on soil organic carbon (SOC). Reviews and research articles conclude either that there is no effect, or show contradictory effects. Given that SOC is a substantial store of potential greenhouse gasses and forest logging and harvesting is routine, resolution is important. We review forest logging SOC studies and provide an overarching conceptual explanation for their findings. The literature can be separated into short‐term empirical studies, longer‐term empirical studies and long‐term modelling. All modelling that includes major aboveground and belowground biomass pools shows a long‐term (i.e. ≥300 years) decrease in SOC when a primary forest is logged and then subjected to harvesting cycles. The empirical longer‐term studies indicate likewise. With successive harvests the net emission accumulates but is only statistically perceptible after centuries. Short‐term SOC flux varies around zero. The long‐term drop in SOC in the mineral soil is driven by the biomass drop from the primary forest level but takes time to adjust to the new temporal average biomass. We show agreement between secondary forest SOC stocks derived purely from biomass information and stocks derived from complex forest harvest modelling. Thus, conclusions that conventional harvests do not deplete SOC in the mineral soil have been a function of their short time frames. Forest managers, climate change modellers and environmental policymakers need to assume a long‐term net transfer of SOC from the mineral soil to the atmosphere when primary forests are logged and then undergo harvest cycles. However, from a greenhouse accounting perspective, forest SOC is not the entire story. Forest wood products that ultimately reach landfill, and some portion of which produces some soil‐like material there rather than in the forest, could possibly help attenuate the forest SOC emission by adding to a carbon pool in landfill.  相似文献   

19.
Temperate forests have recently been identified as being continuing sinks for carbon even in their mature and senescent stages. However, modeling exercises indicate that a warmer and drier climate as predicted for parts of Central Europe may substantially alter the source/sink function of these economically important ecosystems. In a transect study with 14 mature European beech (Fagus sylvatica L.) forests growing on uniform geological substrate, we analyzed the influence of a large reduction of annual precipitation (970–520 mm yr?1) on the carbon stocks in fast and slow pools, independent of the well‐known aging effect. We investigated the C storage in the organic L, F, H layers, the mineral soil to 100 cm, and in the biomass (stem, leaves, fine roots), and analyzed the dependence of these pools on precipitation. Soil organic carbon decreased by about 25% from stands with > 900 mm yr?1 to those with < 600 mm yr?1; while the carbon storage in beech stems slightly increased. Reduced precipitation affected the biomass C pool in particular in the fine root fraction but much less in the leaf biomass and stem fractions. Fine root turnover increased with a precipitation reduction, even though stand fine root biomass and SOC in the organic L, F, and H layers decreased. According to regression analyses, the C storage in the organic layers was mainly controlled by the size of the fine root C pool suggesting an important role of fine root turnover for the C transfer from tree biomass to the SOC pool. We conclude that the long‐term consequence of a substantial precipitation decrease would be a reduction of the mineral soil and organic layer SOC pools, mainly due to higher decomposition rates. This could turn temperate beech forests into significant carbon sources instead of sinks under global warming.  相似文献   

20.
辽宁省农田土壤碳库分布及变化的模拟分析   总被引:13,自引:0,他引:13  
中国作为世界上一个重要的农业大国,农业土壤对全球大气中CO2浓度的影响正在引起人们的普遗关注。研究以辽宁省为对象,采用针对农业土壤碳库和痕量气体排放估算建立的反硝化分解(DNDC)模型,在建立有关辽宁省气候、农业土壤和农业生产的分县数据库基础上,估算了辽宁省农田土壤碳库储量,为118.55TgC,并发现辽宁省农田土壤碳量有较明显的地区差异,东北地区较高,西南地区较低。经过一年的耕种后,农田土壤碳的变化量也有较明显的地区差异,东北地区减少幅度较大,西南地区相对变化不大或有所增加。还发现无论何种施肥方式,辽宁省农田土壤碳的变化都存在地区差异。且施用有机肥有利于农田土壤碳的积累。在输入的土壤性质数据中,有机质数据的详细程度对DNDC模型模拟结果的精确度影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号