首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
模拟大气氮沉降对中国森林生态系统影响的研究进展   总被引:3,自引:0,他引:3  
人类活动加剧了活性氮的生产和排放,并导致氮沉降日益增加并全球化。目前,人类活动对全球氮循环的干扰已经超出了地球系统安全运行的界限。中国已成为全球氮沉降的高发区域,高氮沉降已经威胁到生态系统的健康和安全,并成为生态文明建设过程中亟待理清和解决的热点问题。对国际上和中国森林生态系统模拟氮沉降研究的概况进行了综述,并从生物学和非生物学两大过程重点阐述模拟氮沉降增加对中国主要森林生态系统影响的研究进展。中国自2000年以后才开始重视大气氮沉降产生的生态环境问题,中国科学院华南植物园在国内森林生态系统模拟氮沉降试验研究上做出了开创性的贡献。模拟氮沉降研究表明,持续高氮输入将会显著改变森林生态系统的结构和功能,并威胁生态系统的健康发展,特别是处于氮沉降热点区域的中国中南部。森林生态系统的氮沉降效应依赖于系统的氮状态、土地利用历史、气候特征、林型和林龄等。最后,对未来的研究提出了一些建议,包括加强长期跟踪研究和不同气候带站点之间的联网研究,特别是在森林生态系统对长期氮沉降响应与适应的过程机制、地下碳氮吸存潜力研究、以及与其他全球变化因子的耦合研究等方面,以期为森林生态系统的可持续发展提供理论基础和管理依据。  相似文献   

2.
Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N‐limited temperate forests. In N‐rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old‐growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low‐N), 100 (Medium‐N), and 150 (High‐N) kg N ha?1 year?1. Soil organic carbon (SOC) content increased under High‐N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High‐N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes, and biodiversity of tropical ecosystems.  相似文献   

3.
Nitrogen deposition contributes to soil acidification in tropical ecosystems   总被引:12,自引:0,他引:12  
Elevated anthropogenic nitrogen (N) deposition has greatly altered terrestrial ecosystem functioning, threatening ecosystem health via acidification and eutrophication in temperate and boreal forests across the northern hemisphere. However, response of forest soil acidification to N deposition has been less studied in humid tropics compared to other forest types. This study was designed to explore impacts of long‐term N deposition on soil acidification processes in tropical forests. We have established a long‐term N‐deposition experiment in an N‐rich lowland tropical forest of Southern China since 2002 with N addition as NH4NO3 of 0, 50, 100 and 150 kg N ha?1 yr?1. We measured soil acidification status and element leaching in soil drainage solution after 6‐year N addition. Results showed that our study site has been experiencing serious soil acidification and was quite acid‐sensitive showing high acidification (pH(H2O)<4.0), negative water‐extracted acid neutralizing capacity (ANC) and low base saturation (BS,< 8%) throughout soil profiles. Long‐term N addition significantly accelerated soil acidification, leading to depleted base cations and decreased BS, and further lowered ANC. However, N addition did not alter exchangeable Al3+, but increased cation exchange capacity (CEC). Nitrogen addition‐induced increase in SOC is suggested to contribute to both higher CEC and lower pH. We further found that increased N addition greatly decreased soil solution pH at 20 cm depth, but not at 40 cm. Furthermore, there was no evidence that Al3+ was leaching out from the deeper soils. These unique responses in tropical climate likely resulted from: exchangeable H+ dominating changes of soil cation pool, an exhausted base cation pool, N‐addition stimulating SOC production, and N saturation. Our results suggest that long‐term N addition can contribute measurably to soil acidification, and that shortage of Ca and Mg should receive more attention than soil exchangeable Al in tropical forests with elevated N deposition in the future.  相似文献   

4.
氮沉降持续增加背景下土壤C∶N∶P化学计量比和pH环境等的改变及其可能的土壤微生物学机制已经成为陆地生态系统与全球变化研究的新生长点和科学研究前沿.以生态化学计量学和土壤微生物生态学为理论基础,综述了氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制的基本理论、最新进展、研究热点与难点,旨在促进全球变化背景下陆地生态系统地下生态学的研究.氮沉降持续增加会导致森林生态系统磷循环加速,导致磷限制.氮沉降不但改变森林土壤有机质和凋落物的C∶N∶P化学计量比和降低土壤pH值,而且改变土壤微生物生物量碳氮磷、细菌、真菌和放线菌的组成以及影响碳氮磷分解的关键酶活性.氮沉降对森林土壤有机质和凋落物分解的影响表现为促进、抑制和无影响,其影响的差异可能来源于微生物效应的不同.叶片在凋落前有显著的氮磷养分回收,但是根无明显的养分回收,造成土壤有机质和凋落物的C∶N∶P化学计量比存在明显差异.基于DNA/RNA等分子生物学方法为土壤微生物生态学研究提供了强有力的手段,将促进氮沉降对森林土壤有机质和凋落物化学计量比改变的微生物学机制研究.  相似文献   

5.
《农业工程》2014,34(6):302-310
Soil acidification is defined as the process in which exchangeable cations are leaching and soil H+ concentration is raising thereby increases soil acidity. Changes in soil pH value and acid neutralizing capacity are mainly indicators of soil acidification. Soil acidification is considered to be a serious ecological and environmental issue, which not only reduces soil quality, but also decreases biodiversity of forest ecosystem and induces forest decline. With nitrogen (N) deposition rapidly increasing, its contribution to soil acidification becomes a major concern in the world. However, the impact of increased N deposition on soil acidification is not well addressed highlighting the need for further attention to the issue. In this paper, the studies on forest soil acidification induced by N deposition were reviewed. The factors related to soil acidification driven by N deposition were classified and discussed, which included soil acidic buffering capacity, N components in atmospheric N deposition, climate, plant species in forests, and N status in ecosystem. Iron (Fe) buffering phase and the consequent Fe toxicity occurring to the acidified soil caused by high N deposition were concerned. The scarcity of phosphorus (P) element induced by soil acidification was particularly emphasized. The research methods used to study soil acidification driven by N deposition were also evaluated. In the end we stressed the importance of the study on soil acidification especially in tropical and subtropical regions driven by N deposition and its mechanisms. This paper can serve for maintaining sustainable forest and agricultural ecosystems.  相似文献   

6.
Scant information is available on how soil phosphorus (P) availability responds to atmospheric nitrogen (N) deposition, especially in the tropical zones. This study examined the effect of N addition on soil P availability, and compared this effect between forest sites of contrasting land‐use history. Effects of N addition on soil properties, litterfall production, P release from decomposing litter, and soil P availability were studied in a disturbed (reforested pine forest with previous understory vegetation and litter harvesting) and a rehabilitated (reforested mixed pine/broadleaf forest with no understory vegetation and litter harvesting) tropical forest in southern China. Experimental N‐treatments (above ambient) were the following: Control (no N addition), N50 (50 kg N ha?1 yr?1), and N100 (100 kg N ha?1 yr?1). Results indicated that N addition significantly decreased soil P availability in the disturbed forest. In the rehabilitated forest, however, soil P availability was significantly increased by N addition. Decreases in soil P availability may be correlated with decreases in rates of P release from decomposing litter in the N‐treated plots, whereas the increase in soil P availability was correlated with an increase in litterfall production. Our results suggest that response of soil P availability to N deposition in the reforested tropical forests in southern China may vary greatly with temporal changes in tree species composition and soil nutrient status, caused by different land‐use practices.  相似文献   

7.
The responses of litter decomposition to nitrogen (N) and phosphorus (P) additions were examined in an old-growth tropical forest in southern China to test the following hypotheses: (1) N addition would decrease litter decomposition; (2) P addition would increase litter decomposition, and (3) P addition would mitigate the inhibitive effect of N addition. Two kinds of leaf litter, Schima superba Chardn. & Champ. (S.S.) and Castanopsis chinensis Hance (C.C.), were studied using the litterbag technique. Four treatments were conducted at the following levels: control, N-addition (150 kg N ha−1 yr−1), P-addition (150 kg P ha−1 yr−1) and NP-addition (150 kg N ha−1 yr−1 plus 150 kg P ha−1 yr−1). While N addition significantly decreased the decomposition of both litters, P addition significantly inhibited decomposition of C.C., but did not affect the decomposition of S.S. The negative effect of N addition on litter decomposition might be related to the high N-saturation in this old-growth tropical forest; however, the negative effect of P addition might be due to the suppression of “microbial P mining”. Significant interaction between N and P addition was found on litter decomposition, which was reflected by the less negative effect in NP-addition plots than those in N-addition plots. Our results suggest that P addition may also have negative effect on litter decomposition and that P addition would mitigate the negative effect of N deposition on litter decomposition in tropical forests.  相似文献   

8.
9.
The addition of nitrogen via deposition alters the carbon balance of temperate forest ecosystems by affecting both production and decomposition rates. The effects of 20 years of nitrogen (N) and phosphorus and potassium (PK) additions were studied in a 40-year-old pine stand in northern Sweden. Carbon fluxes of the forest floor were reconstructed using a combination of data on soil 14C, tree growth, and litter decomposition. N-only additions caused an increase in needle litterfall, whereas both N and PK additions reduced long-term decomposition rates. Soil respiration measurements showed a 40% reduction in soil respiration for treated compared to control plots. The average age of forest floor carbon was 17 years. Predictions of future soil carbon storage indicate an increase of around 100% in the next 100 years for the N plots and 200% for the NPK plots. As much as 70% of the increase in soil carbon was attributed to the decreased decomposition rate, whereas only 20% was attributable to increased litter production. A reduction in decomposition was observed at a rate of N addition of 30 kg C ha–1 y–1, which is not an uncommon rate of N deposition in central Europe. A model based on the continuous-quality decomposition theory was applied to interpret decomposer and substrate parameters. The most likely explanations for the decreased decomposition rate were a fertilizer-induced increase in decomposer efficiency (production-to-assimilation ratio), a more rapid rate of decrease in litter quality, and a decrease in decomposer basic growth rate.  相似文献   

10.
Anthropogenic nitrogen (N) deposition is an expanding problem that affects the functioning and composition of forest ecosystems, particularly the decomposition of forest litters. Legumes play an important role in the nitrogen cycle of forest ecosystems. Two litter types were chosen from Zijin Mountain in China: Robinia pseudoacacia leaves from a leguminous forest (LF) and Liquidambar formosana leaves from a non-leguminous forest (NF). The litter samples were mixed into original forest soils and incubated in microcosms. Then, they were treated by five forms of N addition: NH4 +, NO3 ?, urea, glycine, and a mixture of all four. During a 6-month incubation period, litter mass losses, soil microbial biomass, soil pH, and enzyme activities were investigated. Results showed that mixed N and NO3 ?-N addition significantly accelerated the litter decomposition rates of LF leaves, while mixed N, glycine-N, and urea-N addition significantly accelerated the litter decomposition rates of NF leaves. Litter decomposition rates and soil enzyme activities under mixed N addition were higher than those under single form of N additions in the two forest types. Nitrogen addition had no significant effects on soil pH and soil microbial biomass. The results indicate that nitrogen addition may alter microbial allocation to extracellular enzyme production without affecting soil microbial biomass, and then affected litter decomposition process. The results further reveal that mixed N is a more important factor in controlling litter decomposition process than single form of N, and may seriously affect soil N cycle and the release of carbon stored belowground.  相似文献   

11.
In the last decades, in particular forest ecosystems became increasingly N saturated due to elevated atmospheric N deposition, resulting from anthropogenic N emission. This led to serious consequences for the environment such as N leaching to the groundwater. Recent efforts to reduce N emissions raise the question if, and over what timescale, ecosystems recover to previous conditions. In order to study the effects on N distribution and N transformation processes under the lowered N deposition treatment, we investigated the fate of deposited NH4 +-15N in soil of a N-saturated Norway spruce forest (current N deposition: 34 kg ha?1 year?1; critical N load: 14 kg ha?1 year?1), where N deposition has been reduced to 11.5 kg ha?1 year?1 since 14.5 years. We traced the deposited 15N in needle litter, bulk soil, and amino acids, microbial biomass and inorganic N in soil. Under reduced N deposition, 123 ± 23% of the deposited N was retained in bulk soil, while this was only 72 ± 15% under ambient deposition. We presume that with reduced deposition the amount of deposited N was small enough to become completely immobilized in plant and soil and no leaching losses occurred. Trees receiving reduced N deposition showed a decline in N content as well as in 15N incorporation into needle litter, indicating reduced N plant uptake. In contrast, the distribution of 15N within the soil over active microbial biomass, microbial residues and inorganic N was not affected by the reduced N deposition. We conclude that the reduction in N deposition impacted only plant uptake and drainage losses, while microbial N transformation processes were not influenced. We assume changes in the biological N turnover to start with the onset of the decomposition of the new, N-depleted litter.  相似文献   

12.
Although the canopy can play an important role in forest nutrient cycles, canopy‐based processes are often overlooked in studies on nutrient deposition. In areas of nitrogen (N) and phosphorus (P) deposition, canopy soils may retain a significant proportion of atmospheric inputs, and also receive indirect enrichment through root uptake followed by throughfall or recycling of plant litter in the canopy. We measured net and gross rates of N cycling in canopy soils of tropical montane forests along an elevation gradient and assessed indirect effects of elevated nutrient inputs to the forest floor. Net N cycling rates were measured using the buried bag method. Gross N cycling rates were measured using 15N pool dilution techniques. Measurements took place in the field, in the wet and dry season, using intact cores of canopy soil from three elevations (1000, 2000 and 3000 m). The forest floor had been fertilized biannually with moderate amounts of N and P for 4 years; treatments included control, N, P, and N + P. In control plots, gross rates of NH4+ transformations decreased with increasing elevation; gross rates of NO3? transformations did not exhibit a clear elevation trend, but were significantly affected by season. Nutrient‐addition effects were different at each elevation, but combined N + P generally increased N cycling rates at all elevations. Results showed that canopy soils could be a significant N source for epiphytes as well as contributing up to 23% of total (canopy + forest floor) mineral N production in our forests. In contrast to theories that canopy soils are decoupled from nutrient cycling in forest floor soil, N cycling in our canopy soils was sensitive to slight changes in forest floor nutrient availability. Long‐term atmospheric N and P deposition may lead to increased N cycling, but also increased mineral N losses from the canopy soil system.  相似文献   

13.
氮、磷养分有效性对森林凋落物分解的影响研究进展   总被引:5,自引:0,他引:5  
通过对相关研究文献的综述结果表明,氮(N)和磷(P)是构成蛋白质和遗传物质的两种重要组成元素,限制森林生产力和其他生态系统过程,对凋落物分解产生深刻影响。大量的凋落物分解试验发现在土壤N有效性较低的温带和北方森林,凋落物分解速率常与底物初始N浓度、木质素/N比等有很好的相关关系,也受外源N输入的影响;而在土壤高度风化的热带亚热带森林生态系统中,P可能是比N更为重要的分解限制因子。然而控制试验表明,N、P添加对凋落物分解速率的影响并不一致,既有促进效应也有抑制效应。为了深入揭示N、P养分有效性对凋落物分解的调控机制,"底物的C、N化学计量学"假说、"微生物的N开采"假说以及养分平衡的理论都常被用于解释凋落物分解速率的变化。由于微生物分解者具有较为稳定的C、N、P等养分需求比例,在不同的养分供应的周围环境中会体现出不同的活性,某种最缺乏的养分可能就是分解的最重要限制因子。未来的凋落物分解研究,应延长实验时间、加强室内和野外不同条件下的N、P等养分添加控制试验,探讨驱动分解进程的微生物群落结构和酶活性的变化。  相似文献   

14.
High atmospheric nitrogen (N) deposition is expected to impair phosphorus (P) nutrition of temperate forest ecosystems. We examined N and P cycling in organic soil horizons of temperate forests exposed to long-term N addition in the northeastern USA and Scandinavia. We determined N and P concentrations, enzyme activities and net N and P mineralization rates in organic soil horizons of two deciduous (Harvard Forest, Bear Brook) and two coniferous (Klosterhede, Gårdsjön) forests which had received experimental inorganic N addition between 25 and 150 kg N ha?1 year?1 for more than 25 years. Long-term N addition increased the activity of phosphatase (+?180%) and the activity of carbon (C)- and N-acquiring enzymes (cellobiohydrolase: +?70%, chitinase: +?25%). Soil N enrichment increased the N:P ratio of organic soil horizons by up to 150%. In coniferous organic soil horizons, net N and P mineralization were small and unaffected by N addition. In deciduous organic soil horizons, net N and P mineralization rates were significantly higher than at the coniferous sites, and N addition increased net N mineralization by up to 290%. High phosphatase activities concomitant with a 40% decline in P stocks of deciduous organic soil horizons indicate increased plant P demand. In summary, projected future global increases in atmospheric N deposition may induce P limitation in deciduous forests, impairing temperate forest growth.  相似文献   

15.

Background and aims

Litter, an essential component of forest ecosystems, plays an important role in maintaining soil fertility, sequestering carbon (C) and improving soil biodiversity. However, litter decomposition is affected by increased nitrogen (N) deposition. Numerous reports have presented N deposition experiments in different forest ecosystems to investigate the effects of N deposition on litter decomposition, but the effects remain unclear, especially in ecosystems receiving increasingly higher levels of ambient N deposition. To address this gap, we performed a litterbag experiment to understand the effects of increasing N deposition on the litter decomposition process in natural evergreen broad-leaved forest in the Rainy Area of Western China.

Methods

A 2-year field litter decomposition experiment was conducted using the litterbag method. Four levels of N deposition were established: control (CK; 0 kg·N·ha?1·year?1), low N deposition (LN; 50 kg·N·ha?1·year?1), medium N deposition (MN; 150 kg·N·ha?1·year?1), and high N deposition (HN; 300 kg·N·ha?1·year?1). The simulated N depositions ranged from 50% to 320% of the ambient rate of wet N deposition.

Results

Simulated N deposition significantly increased the remaining mass, C, N, lignin and cellulose of the litter. The LN treatment decreased the remaining phosphorus (P); conversely, the HN treatment increased it. In the late stage of the study period, the mass remaining was positively closely correlated to the lignin and cellulose remaining during the decomposition process.

Conclusions

Simulated N deposition significantly suppressed the litter decomposition in the natural evergreen broad-leaved forest, despite the high rate of ambient N deposition, and the inhibitory effects increased with the N deposition levels. The suppressive effect of N deposition on litter decomposition may be primarily explained by the inhibition of lignin and cellulose degradation by the exogenous inorganic N. With ongoing N deposition in future, N deposition may have a potentially significant impact on C and N cycles in such forest ecosystems.
  相似文献   

16.
为理解氮沉降对华西雨屏区天然常绿阔叶林凋落物分解过程的影响,采用立地控制实验和凋落物分解袋法,研究了低氮沉降(L,50 kg N hm~(-2)a~(-1))、中氮沉降(M,150 kg N hm~(-2)a~(-1))和高氮沉降(H,300 kg N hm~(-2)a~(-1))对华西雨屏区天然常绿阔叶林凋落叶分解过程中基质质量的影响。结果表明:N沉降抑制了凋落叶的分解,并随着N沉降量的增加,抑制作用增强。N沉降遏制了凋落叶的C、N释放和纤维素降解,促进了P释放。N沉降提高了凋落叶的C/P比,中氮和高氮处理提高了凋落叶C/N比。N沉降显著增加了凋落叶N、木质素和纤维素的含量,分解1年后,各N沉降处理的木质素/N和纤维素/N均显著高于对照。N沉降提高了质量残留率与C/N、木质素/N和纤维素/N的相关性,降低了与C/P的相关性。可见,模拟N沉降显著影响了华西雨屏区天然常绿阔叶林凋落叶分解过程中的基质质量,进而影响了凋落叶的分解过程。  相似文献   

17.
Forest edges have become important features in landscapes worldwide. Edges are exposed to a different microclimate and higher atmospheric nitrogen (N) deposition compared to forest interiors. It is, however, unclear how microclimate and elevated N deposition affect nutrient cycling at forest edges. We studied litter decomposition and release of N, phosphorus (P), total cations (TC) and C/N ratios during 18 months via the litterbag technique along edge-to-interior transects in two oak (Quercus robur L.) and two pine (Pinus nigra ssp. laricio Maire and ssp. nigra Arnold) stands in Belgium. Furthermore, the roles of edge conditions (microclimate, atmospheric deposition, soil fauna and soil physicochemical conditions), litter quality and edge decomposer community were investigated as underlying driving factors for litter decomposition. Litter of edge and interior was interchanged (focusing on the influence of edge conditions and litter quality) and placed in open-top chamber (OTC), which create an edge (warmer) microclimate. As the decomposer macrofauna was more abundant at the edge than in the interior, the OTCs were used to isolate the effects of warming versus soil fauna. Oak litter at the edge lost 87 and 37% more mass than litter in the interior. We demonstrated an edge effect on litter decomposition and nutrient release, caused by an interplay of edge conditions (atmospheric deposition of N and TC, soil pH and C/N ratio), litter quality and soil fauna. Consequently, edge effects must be accounted for when quantifying ecosystem processes, such as litter decomposition and nutrient cycling in fragmented landscapes.  相似文献   

18.
Soil extracellular enzymes mediate organic matter turnover and nutrient cycling yet remain little studied in one of Earth’s most rapidly changing, productive biomes: tropical forests. Using a long-term leaf litter and throughfall manipulation, we explored relationships between organic matter (OM) inputs, soil chemical properties and enzyme activities in a lowland tropical forest. We assayed six hydrolytic soil enzymes responsible for liberating carbon (C), nitrogen (N) and phosphorus (P), calculated enzyme activities and ratios in control plots versus treatments, and related these to soil biogeochemical variables. While leaf litter addition and removal tended to increase and decrease enzyme activities per gram soil, respectively, shifts in enzyme allocation patterns implied changes in relative nutrient constraints with altered OM inputs. Enzyme activity ratios in control plots suggested strong belowground P constraints; this was exacerbated when litter inputs were curtailed. Conversely, with double litter inputs, increased enzymatic investment in N acquisition indicated elevated N demand. Across all treatments, total soil C correlated more strongly with enzyme activities than soluble C fluxes, and enzyme ratios were sensitive to resource stoichiometry (soil C:N) and N availability (net N mineralization). Despite high annual precipitation in this site (MAP ~5 m), soil moisture positively correlated with five of six enzymes. Our results suggest resource availability regulates tropical soil enzyme activities, soil moisture plays an additional role even in very wet forests, and relative investment in C, N and P degrading enzymes in tropical soils will often be distinct from higher latitude ecosystems yet is sensitive to OM inputs.  相似文献   

19.
凋落物是植物在其生长发育过程中新陈代谢的产物,是土壤有机质输入的重要途径,凋落物分解是生态系统养分循环的关键过程之一。在全球气候变化背景下,热带地区干旱事件发生的频率和强度均在增加,同时,普遍认为热带地区受磷(P)限制,所以探讨干旱胁迫和土壤磷可用性对热带地区叶凋落物分解的影响及两者是否存在交互效应十分必要,有助于了解干旱对该区叶凋落物分解的影响机制以及是否受土壤磷调控。依据植物多度、碳固持类型、叶质地,以海南三亚甘什岭热带低地雨林的4个树种叶凋落物(铁凌 Hopea exalata、白茶树 Koilodepas bainanense、黑叶谷木 Memecylon nigrescens、山油柑 Acronychia pedunculata)为实验材料,依托2019年在该区建成的热带低地雨林模拟穿透雨减少、磷(P)添加双因素交互控制实验平台,包括干旱(D -50%穿透雨)、P添加(P +50Kg P hm-2a-1)、模拟干旱×P添加(DP -50%穿透雨×+50Kg P hm-2a-1)、对照(CK)4个处理,且4种处理随机分布于3个区组,即设置了3个重复。使用常规的凋落物分解袋法探究实验处理对4个树种叶凋落物的分解系数、碳(C)、氮(N)元素动态变化的影响。结果表明:不同树种的叶凋落物因基质质量不同分解存在差异。模拟干旱处理对叶凋落物C、N损失产生抑制作用,但是对不同树种叶凋落物的抑制作用不同,原因是干旱处理通过抑制土壤分解者活动、减弱凋落物的物理破碎作用,间接抑制凋落物分解,并且由于高质量(含N量高)凋落物受微生物分解者影响较大,所以该凋落物分解受干旱抑制程度较大;P添加处理对叶凋落物C损失存在促进作用、N损失存在抑制作用,原因是土壤中P含量的升高,提高了微生物分解高C物质的能力,以及当土壤中P含量较高时,间接抑制微生物通过分解凋落物获取养分或者促进微生物优先完成自身生长代谢需要而不是合成分解凋落物所需要的酶,导致叶凋落物N损失下降;模拟干旱与P添加处理存在显著交互效应,P添加处理缓解或反转了干旱胁迫对叶凋落物分解的抑制作用。以上结果表明,不同基质质量的凋落物分解存在差异,对干旱胁迫的响应不同;在叶凋落物分解过程中,P添加促进C损失、抑制N损失;此外,在热带低地雨林,土壤中P可用性变化可调节干旱对凋落物分解的影响。  相似文献   

20.
模拟N沉降对森林生态系统的影响是当今全球变化生态学研究的一个热点问题,土壤碳库对N沉降比较敏感,N沉降增加了凋落叶分解过程中外源N含量,间接影响凋落叶分解的化学过程并改变凋落叶分解速率,因此,研究模拟N沉降下凋落叶分解-土壤C-N关系对预测森林C吸存有重要意义。利用原位分解袋法研究了模拟N沉降下三峡库区不同林龄马尾松林(Pinus massoniana)凋落叶分解过程中凋落叶-土壤C、N化学计量响应及其关系;N沉降水平分对照(CK,0 g m~(-2)a~(-1))、低氮(LN,5 g m~(-2)a~(-1))、中氮(MN,10 g m~(-2)a~(-1))和高氮(HN,15 g m~(-2)a~(-1))。结果表明:分解540 d后,N沉降促进20年生和30年生马尾松林凋落叶分解,46年生马尾松林中仅低氮处理促进凋落叶分解,4种处理均是30年生分解最快,说明同一树种起始N含量低的凋落叶对N沉降呈正响应,N沉降处理促进起始N含量低的凋落叶分解,起始N含量高的凋落叶分解过程中易达到"N饱和"。N沉降抑制20年生和46年生凋落叶C释放(低于对照0.62%—6.69%),促进30年生C释放(高于对照0.28%—5.55%);30年生和46年生林分N固持量均高于对照(高于对照0.15%—21.34%),20年生则低于对照(5.70%—13.87%),说明模拟N沉降处理促进起始C含量低的凋落叶C释放和起始N含量低的凋落叶N固持。N沉降处理下仅30年生马尾松林土壤有机碳较对照增加,且土壤有机质与凋落叶C、N和分解速率呈正相关,与凋落叶C/N比呈显著负相关;土壤总氮与凋落叶分解速率、凋落叶N含量呈正相关,土壤有机碳/总氮比与凋落叶C、N含量呈正相关;对照处理中凋落叶分解指标对土壤养分影响顺序是分解速率凋落物C含量凋落物C/N比凋落物N含量,低、中、高氮处理中则是凋落物C含量分解速率凋落物N含量凋落物C/N比。研究表明低土壤养分含量马尾松林对N沉降呈正响应,N沉降促进低土壤养分马尾松林凋落叶分解并提高土壤肥力;凋落叶质量和土壤养分含量低的生态系统土壤C对N沉降响应更显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号