首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We exposed snails of an invasive species of golden apple snail (Pomacea canaliculata) to five artificial sea water treatments at salinity levels of 0, 5, 10, 15 or 20 parts per thousand (ppt) to assess their salinity tolerance. We observed the behaviour, heart rate, total haemocyte counts, haemolymph ionic concentration and Na+/K+-ATPase activity in the mantle at 0, 12, 24, 48, 72 and 96 h post salinity exposures. The heart rate declined with increasing salinity, while Na+/K+-ATPase activity in the mantle presented a reverse trend, possibly to maintain normal osmolality. A trend of rising total haemocyte count was observed from 0 ppt and 5 ppt to 10 ppt salinities, while a sudden increase in the count was observed at 15 ppt and 20 ppt salinity groups. Furthermore, haemolymph Cl?, Na+ and K+ concentrations increased directly with elevated salinity. An additional trial was performed to assess the growth performance of the snails under exposure to low salinities. During a 1 month trial, snails grew better at 5 ppt salinity treatment. Taken together, our results demonstrate that P. canaliculata can tolerate salt stress to some extent. The finding also obviously implies a possible invasive risk to estuaries.  相似文献   

2.
Synopsis Blood samples from cannulated young adult (2.5–15 kg) white sturgeon, acclimated to San Francisco Bay water (24 ppt) had plasma values of 248.8 ± 13.5 mOsm kg−1 H2O, [Na+] = 125 ± 8.0 mEq 1−1, [K+] = 2.6 ± 0.8 mEq 1−1 and [CL] = 122 ± 3.0 mEq 1−1. Freshwater acclimated sturgeon had an osmolality of 236 ± 7, [Na+] = 131.6 + 4.4, [K+] = 2.5 ± 0.7 and [CL] = 110.6 ± 3.6. Freshwater acclimated fish gradually exposed to sea water (increase of 5 ppt h−1) had higher plasma osmolalities than did the bay water acclimated fish. These young adult sturgeon are able to tolerate transfer from fresh water to sea water as well as gradual transfer from sea water to fresh water. Plasma electrolytes in transferred fish are regulated, but tend to differ from long term acclimated fish at the same salinities. There is a gradual increase in the upper salinity tolerance (abrupt transfer) of juvenile white sturgeon with weight: 5–10 ppt for 0.4–0.9 g fish, 10–15 ppt for 0.7–1.8 g fish, and 15 ppt for 4.9–50.0 g fish. The ability of juveniles to regulate plasma osmolality is limited. The young adult fish are able to tolerate higher salinities (35 ppt) than juvenile sturgeon but probably are also characterized by low activity of the necessary ion exchange mechanisms in the gills which permit rapid adjustment of blood electrolytes with graduate change in external salinity.  相似文献   

3.
Growth hormone (GH) transgenic fish are at a critical step for possible approval for commercialization. Since this hormone is related to salinity tolerance in fish, our main goal was to verify whether the osmoregulatory capacity of the stenohaline zebrafish (Danio rerio) would be modified by GH-transgenesis. For this, we transferred GH-transgenic zebrafish (T) from freshwater to 11 ppt salinity and analyzed survival as well as relative changes in gene expression. Results show an increased mortality in T versus non-transgenic (NT) fish, suggesting an impaired mechanism of osmotic acclimation in T. The salinity effect on expression of genes related to osmoregulation, the somatotropic axis and energy metabolism was evaluated in gills and liver of T and NT. Genes coding for Na+, K+-ATPase, H+-ATPase, plasma carbonic anhydrase and cytosolic carbonic anhydrase were up-regulated in gills of transgenics in freshwater. The growth hormone receptor gene was down-regulated in gills and liver of both NT and T exposed to 11 ppt salinity, while insulin-like growth factor-1 was down-regulated in liver of NT and in gills of T exposed to 11 ppt salinity. In transgenics, all osmoregulation-related genes and the citrate synthase gene were down-regulated in gills of fish exposed to 11 ppt salinity, while lactate dehydrogenase expression was up-regulated in liver. Na+, K+-ATPase activity was higher in gills of T exposed to 11 ppt salinity as well as the whole body content of Na+. Increased ATP content was observed in gills of both NT and T exposed to 11 ppt salinity, being statistically higher in T than NT. Taking altogether, these findings support the hypothesis that GH-transgenesis increases Na+ import capacity and energetic demand, promoting an unfavorable osmotic and energetic physiological status and making this transgenic fish intolerant of hyperosmotic environments.  相似文献   

4.
Winter skates, Leucoraja ocellata, exposed to 80% and 50% seawater (SW) exhibited rapid and significant weight gains followed by a slight recovery to new steady state levels within 8 days. Skates were acclimated at each salinity (100% SW [N = 16], 80% SW [N = 8], 50% SW [N = 8]), anesthetized (MS222) and bled from the caudal vein. In 100% SW, skate plasma (930mOsm/kg) was slightly hyperosmotic to the external medium (922mOsm/kg). Plasma osmolality decreased with seawater dilution, but became increasingly hyperosmotic to the bathing media. The environmental dilutions resulted in significant, but disproportionate changes in plasma Cl, P, Na+, Ca+, Mg+, trimethylamine oxide (TMAO) and urea concentrations. Mean corpuscular [Hb] and milliliter RBC water measurements suggest that skate red cells swelled less at each dilution than predicted for a passive erythrocyte osmometer. Concentrations of the major RBC solutes K+, urea, TMAO and Cl decreased by 8, 25, 5 and 21%, respectively in 80% SW. In 50% SW, K+, urea, TMAO and Cl concentrations decreased by 9, 47, 36 and 15%, respectively. Quantitatively, the other measured intracellular electrolytes (Mg+, Na+, P and Ca+) also exhibited disproportionate changes in concentration. Our results indicate that L. ocellata is a euryhaline elasmobranch that can tolerate significant reduction in the external salinity through the release of both ions and urea from the extracellular compartments while retaining electrolytes at the expense of urea in the intracellular compartment.  相似文献   

5.
Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na+, K+-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na+, K+-ATPase content. Kidneys were analyzed for Na+, K+-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na+, K+-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na+, K+-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na+, K+-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO3 and 2CO3 2−) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size.  相似文献   

6.
High Na+ concentrations may disrupt K+ and Ca2+ transport and interfere with growth of many plant species, cotton (Gossypium hirsutum L.) included. Elevated Ca2+ levels often counteract these consequences of salinity. The effect of supplemental Ca2+ on influx of Ca2+, K+, and Na+ in roots of intact, salt-stressed cotton seedlings was therefore investigated. Eight-day-old seedlings were exposed to treatments ranging from 0 to 250 millimolar NaCl in the presence of nutrient solutions containing 0.4 or 10 millimolar Ca2+. Sodium influx increased proportionally to increasing salinity. At high external Ca2+, Na+ influx was less than at low Ca2+. Calcium influx was complex and exhibited two different responses to salinity. At low salt concentrations, influx decreased curvilinearly with increasing salt concentration. At 150 to 250 millimolar NaCl, 45Ca2+ influx increased in proportion to salt concentrations, especially with high Ca2+. Potassium influx declined significantly with increasing salinity, but was unaffected by external Ca2+. The rate of K+ uptake was dependent upon root weight, although influx was normalized for root weight. We conclude that the protection of root growth from salt stress by supplemental Ca2+ is related to improved Ca-status and maintenance of K+/Na+ selectivity.  相似文献   

7.
The salinity tolerance, and hydromineral regulation capabilities of three size groups (small 110–170 g; medium 230–290 g, large 460–700 g; n=48 for each group) of 13-month-old juvenile Gulf of Mexico sturgeon were investigated. Fish (n=6 for each salinity) were transferred directly from freshwater (FW) to a series of experimental salinity treatments (0, 5, 10, 15, 20, 25, 30, and 35 parts per thousand (ppt)). Fish were also acclimated in brackish water (20 ppt) for 2 weeks and transferred to a salinity of 34 ppt. In this condition juvenile Gulf of Mexico sturgeon adapted to saltwater (SW) and maintained their hydromineral balance. FW adapted sturgeon (n=6) had an average blood hemotocrit of 28.2±0.8%, plasma osmolality of 260.7±1.6 mOsm kg−1 H2O, and plasma ion concentrations of 135.7±1.2 mM l−1 Na+, 106.9±1.9 mEq l−1 Cl, and 2.9±0.1 mM l−1 K+. In SW adapted sturgeon (n=8) blood parameters averaged 26.9±0.7% for hematocrit, 294.2±2.3 mOsm kg−1 H2O for osmolality, 152.0±1.7 mM l−1 Na+, 149.2±1.4 mEq l−1 for Cl, and 3.1±0.1 mM l−1 K+. The method of transfer (abrupt or slow acclimation) directly affected fish survival and the time they took to achieve ionic and osmotic regulation. This SW adaptation appears to be related to body size, the larger the fish the easier the adaptation process. A threshold size of about 170 g was apparent for the fish to adapt to saltwater after 2 weeks of acclimation. Chloride cells were present in both FW and SW adapted sturgeon with SW and brackish water fish having chloride cells significantly (P<0.05) more numerous (561±53 and 598±45 cells mm−2) and larger in size (41.0±3.85 and 34.2±4.49 μm2) than FW adapted sturgeon (10±1.0 cells mm−2 and 22±2.53 μm2). Few chloride cells were observed in the opercular membrane, however, none were found in the pseudobranch and spiracle.  相似文献   

8.
Total ion (Na+, K+, Ca2+, SO4 2? and Cl?) accumulation by plants, ion contents in plant tissues and ion secretion by salt glands on the surface of shoots of Tamarix ramosissima adapted to different soil salinity, namely low (0.06 mmol Na+/g soil), moderate (3.14–4.85 mmol Na+/g soil) and strong (7.56 mmol Na+/g soil) were analyzed. There are two stages of interrelated and complementary regulation of ion homeostasis in whole T. ramosissima plants: (1) regulation of ion influx into the plant from the soil and (2) changing the secretion efficiency of salt glands on shoots. The secretion efficiency of salt glands was appraised by the ratio of ion secretion to tissue ion content. Independent of soil salinity, the accumulation of K+ and Ca2+ was higher than the contents of these ions in the soil. Furthermore, the accumulation of K+, Ca2+ and SO4 2? ions by plants was maintained within a narrow range of values. Under low soil salinity, Na+ was accumulated, whereas under moderate and strong salinity, the influxes of Na+ were limited. However, under strong salinity, the accumulation of Na+ was threefold higher than that under low soil salinity. This led to a change in the Na+/K+ ratio (tenfold), an increase in the activity of salt glands (tenfold) and a reduction in plant growth (fivefold). An apparently high Na+/K+ ratio was the main factor determining over-active functioning of salt glands under strong salinity. Principal component analysis showed that K+ ions played a key role in ion homeostasis at all levels of salinity. Ca2+ played a significant role at low salinity, whereas Cl? and interrelated regulatory components (K+ and proline) played a role under strong salinity. Proline, despite its low concentration under strong salinity, was involved in the regulation of secretion by salt glands. Different stages and mechanisms of ion homeostasis were dominant in T. ramosissima plants adapted to different levels of salinity. These mechanisms facilitated the accumulation of Na+ in plants under low soil salinity, the limitation of Na+ under moderate salinity and the over-activation of Na+ secretion by salt glands under strong salinity, which are all necessary for maintaining ion homeostasis and water potential in the whole plant.  相似文献   

9.
Root elongation by wheat seedlings (Triticum aestivum L. cv. Scout 66) was not inhibited by NaCl or KCl up to 130 mM in culture solutions or by high Na+ (2 mg g-1 FW) or K+ (4 mg g-1 FW) in the root tissue, provided that [Ca2+]>2 mM in the rooting medium. At [NaCl], [KCl], or [mannitol] >250 mOs, root elongation was progressively inhibited, irrespective of high [Ca2+]. In contrast, shoot elongation was sensitive to any diminution of water potential, and Ca2+ alleviated the toxicity only weakly. At solute concentrations <250 mOs, the following interactions were observed. Ca2+ alleviated Na+ and K+ toxicity to roots by at least three separate mechanisms. K+ was more toxic to roots than Na+, but Na+ was more toxic to shoots. Low levels of K+ relieved Na+ toxicity, but low levels of Na+ enhanced K+ toxicity. Tissue concentrations of Na+ were reduced by Ca2+ and K+ in the rooting medium, and tissue concentrations of K+ were enhanced by Ca2+ and Na+. Several hypotheses relating to salinity toxicity can be evaluated, at least for wheat seedlings. The osmoticant hypotheses (salinity intoxication occurs because of diminished water potential) is true for shoots at all salinity levels, but is true for roots only at high salinity. The Ca2+-displacement hypothesis (Na+ is toxic because it displaced Ca2+ from the cell surface) is correct, but often of minor importance. The K+-depletion hypothesis (Na+ is toxic because it causes a loss of K+ from plant tissues) is false. The Cl--toxicity hypothesis (the apparent toxicity of Na+ is induced by associated Cl-) is false. The results indicate that, apart from osmotic effects, high levels of Na+ in the rooting medium and in the tissues are not toxic unless Ca2+ is also deficient, a condition probably leading to inadequate compartmentation and excessive cytoplasmic accumulation. This study related growth to ion activities at plasma-membrane surfaces. These activities were computed by a Gouy-Chapman-Stern model then incorporated into non-linear growth models for growth versus toxicants and ameliorants.Key words: Calcium, potassium, salinity, sodium, toxicity   相似文献   

10.
In the Mississippi River Delta, the common wetland grass, Phragmites australis, displays high genetic diversity, as several genetically distinct populations are co-occurring. Differences in salinity tolerance may be an important factor determining these populations’ distribution in the delta. Our study investigated the salt tolerance of four genotypes exposed to 0, 10, 20, 30, and 40 ppt salinity. The growth rate, biomass, and the light-saturated photosynthetic rate were stimulated at 10 ppt salinity and inhibited at salinities higher than 20 ppt, compared to controls. Increased concentrations of Cl? and Na+ were found in the roots and older leaves of plants exposed to high salinities. Salt tolerance levels differed between genotypes. High salinity tolerance was mainly achieved by reduced water uptake and vacuole compartmentalization of toxic ions. The most tolerant genotype sustained biomass and photosynthesis even at 40 ppt, whereas the most sensitive genotype did not survive salinities higher than 20 ppt. Our findings show that the observed occurrence of different genotypes in the Mississippi River Delta is correlated to genetically determined differences in salinity tolerance. Further investigations are needed to better understand the role that salinity tolerance plays in the invasion of certain introduced P. australis genotypes.  相似文献   

11.
Transepithelial potentials (TEP) were measured in killifish, acclimated to freshwater (FW), seawater (SW), 33% SW or cycling salinities relevant to tidal cycles in an estuary, and subsequently subjected to salinity changes in progressive or random order. Random compared to progressive salinity changes in an upward or downward direction in FW- and SW-acclimated fish, respectively, did not greatly influence responses to salinity change. Fish acclimated to SW or 33% SW as well as those acclimated to cycling salinities behaved similarly (TEP more positive than +15 mV in 100% SW, decreasing to ~0 mV at 20–40% SW, and more negative than −30 mV in FW). In contrast, FW-acclimated fish displayed a less pronounced TEP response to salinity (0 mV in FW through 20% SW, increasing thereafter to values more positive than +10 mV at 100% SW). We conclude that when evaluated under estuarine tidal conditions, the killifish gill exhibits adaptive electrical characteristics, opposing Na+ loss at low salinity and favouring Na+ extrusion at high salinity, changes explained at least in part by the Cl to Na+ permeability ratio. Thus animals living in the estuaries can move to lower and higher salinities for short periods with little physiological disturbance, but this ability is lost after acclimation to FW.  相似文献   

12.
The physiology of hyper-salinity tolerance in teleost fish: a review   总被引:3,自引:0,他引:3  
Hyper-saline habitats (waters with salinity >35 ppt) are among the harshest aquatic environments. Relatively few species of teleost fish can tolerate salinities much above 50 ppt, because of the challenges to osmoregulation, but those that do, usually estuarine, euryhaline species, show a strong ability to osmoregulate in salinities well over 100 ppt. Typically, plasma Na+ and Cl concentrations rise slowly or not at all up to about 65 ppt. At higher salinities ion levels do rise, but the increase is small relative to the magnitude of increase in concentrations of the surrounding water. A number of adjustments are responsible for such strong osmoregulation. Reduced branchial water permeability is indicated by the observation that with the exposure to hyper-salinities drinking rates rise more slowly than the branchial osmotic gradient. Lower water permeability limits osmotic water loss and greatly reduces the salt load incurred in replacing it. Still, increased gut Na+/K+-ATPase (NAK) activity is necessary to absorb the larger gut salt load and increased HCO3 secretion is required to precipitate Ca2+ and some Mg2+ in the imbibed water to facilitate water absorption. All Na+ and Cl taken up must be excreted and increased branchial salt excreting capacity is indicated by elevated mitochondrion-rich cell density and size, gill NAK activity and expression of chloride channels. Excretion of Na+ and Cl occurs against a larger gradient than in seawater and calculation of the equilibrium potential for Na+ across the gill epithelium indicates that the trans-epithelial potential required for excretion of Na+ climbs with salinity up to about 65 ppt before leveling off due to the increasing plasma Na+ levels. During acute transition to SW or mildly hyper-saline waters, some species have shown the ability to upregulate branchial NAK activity rapidly and this may play an important role in limiting disturbances at higher salinities. It does not appear that the opercular epithelium, which in SW acts in a way that is functionally similar to the gills, continues to do so in hyper-saline waters. Little is know about the hormones involved in acclimation to hyper-salinity, but the few studies available suggest a role for cortisol, but not growth hormone and insulin-like growth factor. Despite the increased transport capacity evident in both the gill and gut in hyper-saline waters there is no clear trend toward increased metabolic rate. These studies provide a general outline of the mechanisms of osmoregulation in these species, but significant questions still remain.  相似文献   

13.
Low-salinity adaptability was investigated in a flatfish spotted halibut Verasper variegatus during the period from late metamorphic larvae to early juveniles by a 20-day rearing experiment under different salinity regimes (1, 4, 8, 16 and 32 ppt). Effects of low-salinity on growth and development were examined and the changes in the prolactin (PRL) production level in the pituitary and the gill chloride cell morphology were examined as physiological backgrounds for low salinity adaptation. PRL cells and chloride cells were identified by immunocytochemistry with a specific antiserum for PRL188 and Na+,K+-ATPase. Most of the fish exposed to over 4 ppt survived for 20 days, but all the fish exposed to 1 ppt died within 5 days. Fish kept in intermediate salinities (8, 16 ppt) grew significantly better than those in the control group (32 ppt). Fish exposed to 4 ppt attained almost the same body length as the control group at 20 days after transfer, although these fish showed an abnormally dark body color as well as delayed development. These results suggested that spotted halibut has a high-adaptability to low-salinity environments and prefers an intermediate salinity near iso-osmolality (about 12 ppt) from the late metamorphic larval stage, but does not completely adapt to a hypoosmotic of 4 ppt salinity or less than half of the osmolality. The percentage of PRL-cell volume to pituitary volume was significantly higher at 4 ppt than in the control group. The chloride cells in gill filaments were significantly larger at 4 ppt than in the control group. These results suggest that juveniles could adapt to a low-salinity environment due to the activation of PRL production and enlargement of chloride cells. These laboratory findings suggest that late metamorphic larvae and early juveniles of spotted halibut may utilize a low salinity environment such as estuarine tidal flats or very shallow coastal areas as their nursery grounds in the sea.  相似文献   

14.
Inorganic carbon and nitrate uptake were examined in whole plants of Fucus distichus L. (Powell) incubated in dilutions of synthetic ocean water and media with different concentrations of Na+, K+ and Cl?. Reduction in salinity from normal seawater (33 ppt) decreased carbon uptake rate but increased nitrate uptake rate by 50% each. Substitution of K+ for Na+ at constant ionic strength decreased nitrate uptake. Substitution of K+ or mannitol for Na+ decreased carbon uptake. Neither the uptake of nitrate or carbon was changed by substituting SO42- for Cl?. Ionophores, valinomycin and monensin, inhibited both nitrate uptake and carbon fixation from 20 to 70% of control rates. The stimulation of nitrate uptake at low salinity may be beneficial to plants in estuarine tidal environments in which nitrate is supplied by the fresh water source.  相似文献   

15.
ABSTRACT

The effects of cadmium concentration (0, 2.5 and 5 mg L?1) on melanocyte-stimulating hormone (MSH), melanophore index (MI), and melanophore number (MN), as well as a microscopic examination of scale melanocytes in tilapia (Oreochromis niloticus Linnaeus, 1757) was evaluated at different salinity levels (0, 5 and 15 ppt). The levels of MSH, MI, and MN were lower in Cd-exposed fish than in control fish (not exposed to Cd) at salinity level of 0 and 5 ppt. In ppt, however these levels of MSH, MI and MN in control and Cd-exposed fish were not significantly different. In the media without Cd, the levels of MSH, MI and MN were not significantly different at all salinities. The morphological changes of melanophores were higher in Cd-exposed fish than in control fish at salinity 0 and 5 ppt, respectively. These morphological changes were not significantly different in the control fish at all salinities as well as in fish exposed to 0–5 mg L?1 Cd at salinity of 15 ppt. This study therefore demonstrates that the toxic effect of Cd on MSH levels and melanophore morphology decreased with increasing salinity. Further, due to the sensitivity of chromatophores to Cd, melanophore morphology is proposed as a biomarker of Cd exposure in aquatic ecosystems.  相似文献   

16.
The salinity tolerance ofVaucheria dichotoma, a siphonous Xanthophycean alga was investigated. The alga survived an external osmotic potential range between 74 and 1, 176 mOsmol (ca. 2.5 and 40.0 ppt. (parts per thousand]). Turgor pressure was regulated in salinities ranging from 74 to 441 mOsmol. With further increase of the salinity, turgor pressure decreased from 153 to 9 mOsmol (0.44 to 0.08 MPa). At 441 mOsmol salinity the major intracellular ions were present in the following concentrations (mM/l cell water): K+, 145; Na+; 90; sulphate, 91; Cl, 91. Under the most severe salinity stress (1,176 mOsmol) the ionic concentration increased to (mM/l cell water): K+, 250; Na+, 75; sulphate, 35; Cl, 351. The content of amino acids: alanine (Ala), threonine (Thr and glutamic acid (Glu) was lower, nerver exceeding 5–11 mM, however; the concentrations were positively correlated with salinity.  相似文献   

17.
Behaviour of different water soluble and exchangeable bases in a brackishwater fish pond soil was studied under four levels of water salinity, in combination with and without organic matter application. The results showed average content of water soluble bases to increase with increase in water salinity. The bases were dominated by Na+ followed by Mg++, Ca++ and K+ in decreasing order. SAR values of water increased with increase in water salinity and decreased slightly on organic matter treatment.Total content of exchangeable bases in soils was fairly high and was dominated by Ca++ and Mg++, followed by Na+ and K+ respectively. Amount of exchangeable Ca++ + Mg++ decreased while that of Na+ increased with increase in water salinity levels. Amount of exchangeable K+ did not show any appreciable change. Application of organic matter tended to increase the exchangeable Ca++ + Mg++ content and decrease the amount of exchangeable Na+ in the soil, while exchangeable K+ content remained practically unaffected due to organic matter treatment.Formed part of a Ph.D. thesis submitted to Bidhan Chandra Agricultural University, India in 1978Formed part of a Ph.D. thesis submitted to Bidhan Chandra Agricultural University, India in 1978  相似文献   

18.
Calli of salt tolerant (Bhoora rata) and salt susceptible (GR11) rice varieties were cultured on Linsmaeir and Skoog’s medium containing LD50 concentration of NaCl (200 mM) and hydroxyproline (10 mM). Growth rate of callus and Na+, K+, Cl, Mg+2, and Ca+2 contents of the cultured rice tissues were determined at the end of 0, 2, 4 and 6 weeks of incubation. Hydroxyproline resistant calli of both rice varieties when cultured on Linsmaeir and Skoog’s medium containing both NaCl and hydroxyproline showed increased dry weight and enhanced intracellular levels of K+, Mg+2 and Ca+2. The accumulation of Na+ and Cl ions was less in the hydroxyproline resistant calli.  相似文献   

19.
Fertilization and development in salmonids occurs almost exclusively within freshwater environments (< 1 ppt). A less common life history strategy in this group of fishes is the brackish-water resident life history, where entire life cycles occur in brackish water (> 1 ppt). In the present study, we tested the hypothesis that differences in rearing environment (fresh or brackish water) results in significant differences in the ability of lake trout to ionoregulate when faced with a salinity challenge later in life. To test this, genetically similar lake trout were fertilized and raised at either 0 or 5 ppt saltwater. At approximately 240 days post hatch, lake trout from both rearing environments were acutely transferred to 20 ppt salt water or their respective rearing environments as a control. Individuals were sampled at time 0, 1, 7, and 14 days post transfer. Fish raised in 5 ppt transferred to 20 ppt saltwater had significantly higher gill Na+ K+-ATPase activity, gill Na+ K+-ATPase α1b expression, and lower plasma osmolality when compared to freshwater reared lake trout transferred to 20 ppt across various time points. Additionally, the 5 ppt control treatment had greater overall aerobic scope than 0 ppt control fish and those transferred from 0 ppt to 20 ppt. These data imply that populations exhibiting a brackish-water resident life history, as has been observed in Arctic Canada, may have an advantage over freshwater reared conspecifics when foraging in marine influenced environments and colonizing new locations in coastal regions.  相似文献   

20.
We investigated the effect of salinity on the relationship between Na+-K+-ATPase and sulfogalactosyl ceramide (SGC) in the basolateral membrane of rainbow trout (Oncorhynchus mykiss) gill epithelium. SGC has been implicated as a cofactor in Na+-K+-ATPase activity, especially in Na+-K+-ATPase rich tissues. However, whole-tissue studies have questioned this role in the fish gill. We re-examined SGC cofactor function from a gill basolateral membrane perspective. Nine SGC fatty acid species were quantified by tandem mass spectrometry (MS/MS) and related to Na+-K+-ATPase activity in trout acclimated to freshwater or brackish water (20 ppt). While Na+-K+-ATPase activity increased, the total concentration and relative proportion of SGC isoforms remained constant between salinities. However, we noted a negative correlation between SGC concentration and Na+-K+-ATPase activity in fish exposed to brackish water, whereas no correlation existed in fish acclimated to freshwater. Differential Na+-K+-ATPase/SGC sensitivity is discussed in relation to enzyme isoform switching, the SGC cofactor site model and saltwater adaptation.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号