首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toxicity and immunity associated with adenovirus backbone gene expression is an important hurdle to overcome for successful gene therapy. Recent efforts to improve adenovirus vectors for in vivo use have focused on the sequential deletion of essential early genes. Adenovirus vectors have been constructed with the E1 gene deleted and with this deletion in combination with an E2a, E2b, or E4 deletion. We report here a novel vector (Av4orf3nBg) lacking E1, E2a, and all of E4 except open reading frame 3 (ORF3) and expressing a beta-galactosidase reporter gene. This vector was generated by transfection of a plasmid carrying the full-length vector sequence into A30.S8 cells that express E1 and E2a but not E4. Production was subsequently performed in an E1-, E2a-, and E4-complementing cell line. We demonstrated with C57BL/6 mice that the Av4orf3nBg vector effected gene transfer with an efficiency comparable to that of the Av3nBg (wild-type E4) vector but that the former exhibited a higher level of beta-galactosidase expression. This observation suggests that E4 ORF3 alone is able to enhance RNA levels from the beta-galactosidase gene when the Rous sarcoma virus promoter is used to drive transgene expression in the mouse liver. In addition, we observed less liver toxicity in mice injected with the Av4orf3nBg vector than those injected with the Av3nBg vector at a comparable DNA copy number per cell. This study suggests that the additional deletion of E4 in an E1 and E2a deletion background may be beneficial in decreasing immunogenicity and improving safety and toxicity profiles, as well as increasing transgene capacity and expression for liver-directed gene therapy.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Unoki M  Nakamura Y 《FEBS letters》2003,554(1-2):67-72
We previously demonstrated several lines of evidence indicating that early growth response 2 (EGR2) functions as a tumor suppressor, partly on the basis that its expression was often decreased in human tumors and cancer cell lines. Here we report a possible molecular mechanism to account for down-regulation of EGR2 in tumor cells. Although no genetic mutations in the gene or alterations in methylation status of its promoter were detected, we found a high degree of methylation at CpG islands in intron 1 of EGR2 in cell lines that were expressing this gene at a high level. Moreover, reporter gene experiments revealed that methylated intron 1 had somehow conferred enhancer-like activity. The data imply the existence of a previously unsuspected mechanism of gene expression regulation.  相似文献   

10.
11.
12.
13.
Gene therapy using viral vectors for liver diseases, particularly congenital disorders, is besought with difficulties, particularly immunologic reactions to viral antigens. As a result, nonviral methods for gene transfer in hepatocytes have also been explored. Gene repair by small synthetic single-stranded oligodeoxynucleotides (ODNs) produces targeted alterations in the genome of mammalian cells and represents a great potential for nonviral gene therapy. To test the feasibility of ODN-mediated gene repair within chromosomal DNA in human hepatocytes, two new cell lines with stably integrated mutant reporter genes, namely neomycin and enhanced green fluorescent protein were established. Targeting theses cells with ODNs specifically designed for repair resulted in site-directed and permanent gene conversion of the single-point mutation of the reporter genes. Moreover, the frequency of gene alteration was highly dependent on the mitotic activity of the cells, indicating that the proliferative status is an important factor for successful targeting in human hepatocytes. cDNA array expression profiling of DNA repair genes under different cell culture conditions combined with RNA interference assay showed that mismatch repair (MMR) in actively growing hepatocytes imposes a strong barrier to efficient gene repair mediated by ODNs. Suppression of MSH2 activity in hepatocytes transduced with short hairpin RNAs (shRNAs) targeted to MSH2 mRNA resulted in 25- to 30-fold increase in gene repair rate, suggesting a negative effect of MMR on ODN-mediated gene repair. Taken together, these data suggest that under appropriate conditions nonviral chromosomal targeting may represent a feasible approach to gene therapy in liver disease.  相似文献   

14.
E2F-1-deleted mutant, 'truncated E2F' (E2Ftr, E2F-1[1-375]), lacking the carboxy-terminal transactivation domain, was shown to be more potent at inducing cancer cell apoptosis than wild-type E2F-1 (wtE2F-1; full-length E2F-1). Mechanisms by which wtE2F-1 and E2Ftr induce apoptosis, however, are not fully elucidated. Our study demonstrates molecular effects of pro-apoptotic BH3-only Bcl-2 family member Harakiri (Hrk) in wtE2F-1- and E2Ftr-induced melanoma cell apoptosis. We found that Hrk mRNA and Harakiri (HRK) protein expression was highly up-regulated in melanoma cells in response to wtE2F-1 and E2Ftr overexpression. HRK up-regulation did not require the E2F-1 transactivation domain. In addition, Hrk gene up-regulation and HRK protein expression did not require p53 in cancer cells. Hrk knockdown by Hrk siRNA was associated with significantly reduced wtE2F-1- and E2Ftr-induced apoptosis. We also found that an upstream factor, 'downstream regulatory element antagonist modulator' (DREAM), may be involved in HRK-mediated apoptosis in response to wtE2F-1 and E2Ftr overexpression. DREAM expression levels increased following wtE2F-1 and E2Ftr overexpression. Western blotting detected increased DREAM primarily in dimeric form. The homodimerization of DREAM resulting from wtE2F-1 and E2Ftr overexpression may contribute to the decreased binding activity of DREAM to the 3'-untranslated region of the Hrk gene as shown by electromobility shift assay. Results showed wtE2F-1- and E2Ftr-induced apoptosis is partially mediated by HRK. HRK function is regulated in response to DREAM. Our findings contribute to understanding the mechanisms that regulate wtE2F-1- and E2Ftr-induced apoptosis and provide insights into the further evaluation of how E2Ftr-induced apoptosis may be used for therapeutic gain.  相似文献   

15.
The induction of dihydrofolate reductase (DHFR), a key enzyme in DNA biosynthesis that is induced just before the onset of S phase, is markedly attenuated in senescent human fibroblasts (Pang and Chen, 1994, J. Cell. Physiol., 160:531–538). Footprinting analysis of the 365 bp promoter region of the human DHFR gene (−381 to −17) indicated that nuclear proteins bind to a cluster of cis-elements, including two overlapping E2F binding sequences, two Sp1 sites, and one Yi sequence. Gel mobility shift assays were performed to assess the role of each cis-element in the regulation of DHFR gene expression. We found that (1) Sp1 binding activity was constitutively expressed throughout the cell cycle in early passage and senescent cells; (2) Yi binding activity was undetectable in both early passage and senescent cells; and (3) E2F binding activity was serum-inducible, senescence-dependent, and prominent in presenescent cells but strikingly diminished in senescent cells. Northern blot analysis of the expression of E2F and DP family members showed that the E2F-1, E2F-4, and E2F-5 mRNA was growth- and senescence-dependent, whereas E2F-3, DP-1, and DP-2 expression was constitutive and senescence-independent. In contrast, E2F-2 mRNA was not detectable in IMR-90 or WI-38 human fibroblasts. Western blot analysis showed that among the E2F-associated proteins, the expression of E2F-1, cyclin A, and cyclin B but not p107 was cell cycle- and senescence-dependent. A nuclear extract mixing experiment suggested that an inhibitory factor may further reduce E2F binding activity in senescent cells. © 1996 Wiley-Liss, Inc.  相似文献   

16.
17.
18.
The Epstein-Barr virus (EBV) immediate-early protein BZLF1 mediates the switch between the latent and lytic forms of EBV infection and has been previously shown to induce a G(1)/S block in cell cycle progression in some cell types. To examine the effect of BZLF1 on cellular gene expression, we performed microarray analysis on telomerase-immortalized human keratinocytes that were mock infected or infected with a control adenovirus vector (AdLacZ) or a vector expressing the EBV BZLF1 protein (AdBZLF1). Cellular genes activated by BZLF1 expression included E2F-1, cyclin E, Cdc25A, and a number of other genes involved in cell cycle progression. Immunoblot analysis confirmed that BZLF1 induced expression of E2F-1, cyclin E, Cdc25A, and stem loop binding protein (a protein known to be primarily expressed during S phase) in telomerase-immortalized keratinocytes. Similarly, BZLF1 increased expression of E2F-1, cyclin E, and stem loop binding protein (SLBP) in primary tonsil keratinocytes. In contrast, BZLF1 did not induce E2F-1 expression in normal human fibroblasts. Cell cycle analysis revealed that while BZLF1 dramatically blocked G(1)/S progression in normal human fibroblasts, it did not significantly affect cell cycle progression in primary human tonsil keratinocytes. Furthermore, in EBV-infected gastric carcinoma cells, the BZLF1-positive cells had an increased number of cells in S phase compared to the BZLF1-negative cells. Thus, in certain cell types (but not others), BZLF1 enhances expression of cellular proteins associated with cell cycle progression, which suggests that an S-phase-like environment may be advantageous for efficient lytic EBV replication in some cell types.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号