首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prepro sequence of the yeast prepro-alpha-factor, usually referred to as the alpha-factor leader, has often been used for the efficient secretion of heterologous proteins from the yeast Saccharomyces cerevisiae. The alpha-factor leader consists of a 19-amino acid N-terminal pre or signal sequence followed by a 66-amino acid proregion. After removal of the signal sequence during membrane translocation, the proregion is cleaved from the precursor protein by the Kex2 endoprotease only in a late Golgi compartment. Here we report that a modified Kex2 enzyme, containing at the C-terminus the HDEL tetrapeptide, cleaves the proregion from the alpha-factor leader--human insulin like growth factor-1 fusion protein in the endoplasmic reticulum. The processing of pro-proteins earlier in the secretion pathway could be helpful in defining the cellular function of the proregions present naturally in various eucaryotic precursor proteins.  相似文献   

2.
Prepro-alpha-factor has a cleavable signal sequence   总被引:11,自引:0,他引:11  
MAT alpha Saccharomyces cerevisiae secrete a small peptide mating pheromone termed alpha-factor. Its precursor, prepro-alpha-factor, is translocated into the endoplasmic reticulum and glycosylated at three sites. The glycosylated form is the major product in a yeast in vitro translation/translocation system. However, there is another translocated, nonglycosylated product that contains a previously unidentified modification. Contrary to previous results suggesting that the signal sequence of prepro-alpha-factor is not cleaved, amino-terminal radiosequencing has identified this product as prepro-alpha-factor without its signal sequence, that is, pro-alpha-factor. The translocated, glycosylated proteins are also processed by signal peptidase. Moreover, we have found that both purified eukaryotic and prokaryotic signal peptidase can process prepro-alpha-factor. Experiments using a yeast secretory mutant (sec 18) blocked in transport from the endoplasmic reticulum to the Golgi indicate that the protein is also cleaved in vivo. Finally, characterization of the Asn-linked oligosaccharide present on pro-alpha-factor in the yeast in vitro system by use of specific glucosidase and mannosidase inhibitors indicates that they have had the three terminal glucoses and probably one mannose removed. Therefore they most likely consist of Man8GlcNAc2 structures, identical to those found in the endoplasmic reticulum in vivo.  相似文献   

3.
The effects of five single-amino-acid substitution mutations within the signal sequence of yeast prepro-alpha-factor were tested in yeast cells. After short pulse-labelings, virtually all of the alpha-factor precursor proteins from a wild-type gene were glycosylated and processed by signal peptidase. In contrast, the signal sequence mutations resulted in the accumulation of mostly unglycosylated prepro-alpha-factor after a short labeling interval, indicating a defect in translocation of the protein into the endoplasmic reticulum. Confirming this interpretation, unglycosylated mutant prepro-alpha-factor in cell extracts was sensitive to proteinase K and therefore in a cytosolic location. The signal sequence mutations reduced the rate of translocation into the endoplasmic reticulum by as much as 25-fold or more. In at least one case, mutant prepro-alpha-factor molecules were translocated almost entirely posttranslationally. Four of the five mutations also reduced the rate of proteolytic processing by signal peptidase in vivo, even though the signal peptide alterations are not located near the cleavage site. This study demonstrates that a single-amino-acid substitution mutation within a eucaryotic signal peptide can affect both translocation and proteolytic processing in vivo and may indicate that the recognition sequences for translocation and processing overlap within the signal peptide.  相似文献   

4.
The Kex2 protease of the yeast Saccharomyces cerevisiae is the prototype of a family of eukaryotic subtilisin homologs thought to process prohormones and other precursors in the secretory pathway. Deletion analysis of Kex2 protease shows that a sequence of 154-159 residues carboxyl to the subtilisin domain is essential for the formation of active enzyme. Disruption of this region, termed the 'P-domain', blocks the normally rapid intra-molecular cleavage of the N-terminal pro-segment of pro-Kex2 protease in the endoplasmic reticulum (ER). The C-terminal boundary of the P-domain coincides closely with the endpoint of similarity between Kex2 protease and its mammalian homologues. The conservation of and functional requirement for the P-domain sharpens the distinction between a 'Kex2 family' of processing enzymes and degradative 'subtilases', and implies that the Kex2-related enzymes have in common entirely novel structural features that are important in the maturation of precursor polypeptide substrates. Failure to cleave the N-terminal pro-domain, due either to truncation of the P-domain or to mutation of the active site histidine or serine, results in stable, intracellular retention of pro-enzyme, apparently in the ER. Thus pro-Kex2 protease appears to contain an ER retention signal which is removed or destroyed by cleavage of the pro-domain.  相似文献   

5.
Export of prepro-alpha-factor from Escherichia coli   总被引:1,自引:0,他引:1  
Yeast prepro-alpha-factor translocates posttranslationally into yeast microsomes in vitro. This process is strongly influenced by the extreme carboxyl-terminal region of the protein. These features contrast with the properties of most eucaryotic proteins which are translocated into the endoplasmic reticulum. We have extended these studies by introducing the gene for the wild-type and several mutant forms of prepro-alpha-factor into Escherichia coli. Prepro-alpha-factor is secreted into the periplasm and processed to pro-alpha-factor. Its translocation across the plasma membrane requires the membrane potential and the secY gene product. Deletion mutant analysis showed that features of the pro-segment were essential for secretion of prepro-alpha-factor in E. coli, while the carboxyl-terminal region, which is required in yeast, is dispensible in E. coli. Neither size nor the presence of a unique topogenic sequence was sufficient to explain the requirement for the pro-segment.  相似文献   

6.
In vitro, efficient translocation and glycosylation of the precursor of yeast alpha-factor can take place post-translationally. This property of prepro-alpha-factor appears to be unique as it could not be extended to other yeast protein precursors such as preinvertase or preprocarboxypeptidase Y. In order to determine if specific domains of prepro-alpha-factor were involved in post-translational translocation, we carried out a series of experiments in which major domains were either deleted or fused onto reporter proteins. Fusion of various domains of prepro-alpha-factor onto the reporter protein alpha-globin did not allow post-translational translocation to occur in the yeast in vitro system. Prepro-alpha-factor retained its ability to be post-translationally translocated when parts or all of the pro region were deleted. Removal of the C-terminal repeats containing mature alpha-factor had the most profound influence as post-translational translocation decreased in proportion to the number of repeats deleted. Taken together, these results suggest that efficient post-translational translocation requires a signal sequence and the four C-terminal repeats. There does not however, appear to be specific information contained within the C-terminus, as their presence in fusion did not enable the post-translational translocation of reporter proteins. Lastly, the ability to post-translationally translocate radiochemically pure prepro-alpha-factor that had been isolated by immuno-affinity chromatography required the addition of a yeast lysate fraction. Moreover, post-translational translocation is a function of the microsomal membrane of yeast microsomes and not of a factor peculiar to the yeast lysate, as reticulocyte lysate supported this as well.  相似文献   

7.
A particulate translation system isolated from the yeast Saccharomyces cerevisiae was shown to translate faithfully in-vitro-transcribed mRNA coding for a mating hormone precursor (prepro-alpha-factor mRNA) and to N-glycosylate the primary translation product after its translocation into the lumen of the microsomal vesicles. Glycosylation of its three potential sugar attachment sites was found to be competitively inhibited by acceptor peptides containing the consensus sequence Asn-Xaa-Thr, supporting the view that the glycan chains are N-glycosidically attached to the prepro-alpha-factor polypeptide. The accumulation in the presence of acceptor peptides of a membrane-specific, unglycosylated translation product (pp-alpha-F0) differing in molecular mass from a cytosolically located, protease-K-sensitive alpha-factor polypeptide (pp-alpha-Fcyt) by about 1.3 kDa, suggests that, in contrast to previous reports, a signal sequence is cleaved from the mating hormone precursor on/after translocation. This conclusion is supported by the observation that the multiply glycosylated alpha-factor precursor is cleaved by endoglucosaminidase H to a product with a molecular mass smaller than the primary translation product pp-alpha-Fcyt but larger than the membrane-specific pp-alpha-F0. Translation and glycosylation experiments carried out in the presence of various glycosidase inhibitors (e.g. 1-deoxynojirimycin, N-methyl-1-deoxynojirimyin and 1-deoxymannojirimycin) indicate that the N-linked oligosaccharide chains of the glycosylated prepro-alpha-factor species are extensively processed under the in vitro conditions of translation. From the specificity of the glycosidase inhibitors applied and the differences in the molecular mass of the glycosylated translation products generated in their presence, we conclude that the glycosylation-competent microsomes contain trimming enzymes, most likely glucosidase I, glucosidase II and a trimming mannosidase, which process the prepro-alpha-factor glycans down to the (Man)8(GlcNAc)2 stage. Furthermore, several arguments strongly suggest that these three enzymes, which apparently represent the full array of trimming activities in yeast, are exclusively located in the lumen of microsomal vesicles derived from endoplasmic reticulum membranes.  相似文献   

8.
We have recently shown that furin, a mammalian homologue of the yeast precursor-processing endoprotease Kex2, is involved in precursor cleavage at sites marked by the Arg-X-Lys/Arg-Arg motif within the constitutive secretory pathway. In this study, we analyzed molecular and enzymatic properties of furin expressed in Chinese hamster ovary cells using gene transfer techniques. COOH-terminal truncation analyses indicate that the polypeptide region significantly conserved among the Kex2 family members is required for the endoprotease activity of furin, while the COOH-terminal unconserved region containing the Cys-rich domain and the transmembrane domain is dispensable. A mutant of furin truncated up to the transmembrane domain from the COOH-terminus was secreted into the culture medium as an active form. The sequence requirements for precursor cleavage of this truncated furin determined in vitro were similar to those of wild-type furin determined by expression studies in cultured cells. It had a strong resemblance to the Kex2 protease in the inhibitor profile and pH dependency. These observations support the notion that furin is the endogenous endoprotease involved in precursor cleavage at Arg-X-Lys/Arg-Arg sites.  相似文献   

9.
《The Journal of cell biology》1990,111(6):2851-2859
Extracts from BSC-40 cells infected with vaccinia recombinants expressing either the yeast KEX2 prohormone endoprotease or a human structural homologue (fur gene product) contained an elevated level of a membrane-associated endoproteolytic activity that could cleave at pairs of basic amino acids (-LysArg- and -ArgArg-). The fur-directed activity (furin) shared many properties with Kex2p including activity at pH 7.3 and a requirement for calcium. By using antifurin antibodies, immunoblot analysis detected two furin translation products (90 and 96 kD), while immunofluorescence indicated localization to the Golgi apparatus. Coexpression of either Kex2p or furin with the mouse beta- nerve growth factor precursor (pro-beta-NGF) resulted in greatly enhanced conversion of the precursor to mature nerve growth factor. Thus, the sequence homology shared by furin and the yeast KEX2 prohormone processing enzyme is reflected by significant functional homology both in vitro and in vivo.  相似文献   

10.
The biosynthesis of membrane proteins at the endoplasmic reticulum (ER) involves the integration of the polypeptide at the Sec61 translocon together with a number of maturation events, such as N-glycosylation and signal sequence cleavage, that can occur both during and after synthesis. To better understand the events occurring after the release of the nascent chain from the ER translocon, we investigated the ER components adjacent to the transmembrane-spanning domain of a well characterized fragment of the amyloid precursor protein. Using individual cysteine residues as site-specific cross-linking targets, we found that several ER components can be cross-linked to the fully integrated polypeptide. We identified strong adducts with both the ribophorin I subunit of the oligosaccharyltransferase complex and the 25-kDa subunit of the signal peptidase complex. Focusing on the association with ribophorin I, we found that adduct formation occurred exclusively after the exit of the nascent chain from the Sec61 translocon and was unaffected by the N-glycosylation status of the associated precursor. Only a subset of newly made membrane proteins associated with ribophorin I in vitro, and we could recapitulate a specific association between the amyloid precursor protein fragment and ribophorin I in vivo. Taken together, our data suggest a model where ribophorin I may function to retain potential substrates in close proximity to the catalytic subunit of the oligosaccharyltransferase and thereby stochastically improve the efficiency of the N-glycosylation reaction in vivo. Alternatively ribophorin I may be multifunctional and facilitate additional processes, for example, ER quality control.  相似文献   

11.
N-glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to humans. The key step of this pathway is the transfer of the lipid-linked core oligosaccharide to the nascent polypeptide chain, catalyzed by the oligosaccharyltransferase complex. Temperature-sensitive oligosaccharyltransferase mutants of Saccharomyces cerevisiae at the restrictive temperature, such as wbp1-1, as well as wild-type cells in the presence of the N-glycosylation inhibitor tunicamycin display typical apoptotic phenotypes like nuclear condensation, DNA fragmentation, phosphatidylserine translocation, caspase-like activity, and reactive oxygen species accumulation. Since deletion of the yeast metacaspase YCA1 did not abrogate this death pathway, we postulated a different proteolytic process to be responsible. Here, we show that Kex1 protease is involved in the programmed cell death caused by defective N-glycosylation. Its disruption decreases caspase-like activity, production of reactive oxygen species, and fragmentation of mitochondria and, conversely, improves growth and survival of cells. Moreover, we demonstrate that Kex1 contributes also to the active cell death program induced by acetic acid stress or during chronological aging, suggesting that Kex1 plays a more general role in cellular suicide of yeast.  相似文献   

12.
We have determined that prepro-carboxypeptidase Y and a truncated form of pre-invertase can be translocated across the yeast microsomal membrane post-translationally in a homologous in vitro system. The yeast secretory protein prepro-alpha-factor which was previously shown to be an efficient posttranslational translocation substrate is therefore not unique in this regard, but rather the yeast ER protein translocation machinery is generally capable of accepting substrates from a ribosome-free, soluble pool. However, within our detection limits, full-length pre-invertase could not be translocated posttranslationally, but was translocated co-translationally. This indicates that not every fully synthesized pre-protein can use this pathway, presumably because normal or aberrant folding characteristics can interfere with translocation competence.  相似文献   

13.
W Hansen  P D Garcia  P Walter 《Cell》1986,45(3):397-406
The in vitro synthesized precursor of the alpha-factor pheromone, prepro-alpha-factor, of Saccharomyces cerevisiae was translocated across yeast microsomal membranes in either a homologous or a wheat germ cell free system. Translocated prepro-alpha-factor was glycosylated, sedimented with yeast microsomal vesicles, and was protected from digestion by added protease, but was soluble after alkaline sodium carbonate treatment. Thus prepro-alpha-factor was properly sequestered within yeast microsomal vesicles, but was not integrated into the lipid bilayer. In marked contrast to protein translocation across mammalian microsomal membranes, translocation of prepro-alpha-factor across yeast microsomal membranes could occur posttranslationally. This reaction required protein components in the yeast microsomal fraction that could be inactivated by alkylation or proteolysis, was ATP-dependent, and was insensitive to the presence of a variety of uncouplers and ionophores.  相似文献   

14.
Kex2p is the prototype of a Golgi-resident protease responsible for the processing of prohormones in yeast and mammalian cells. A Kex2p-like pathway was shown to be responsible for processing the fungal KP6 protoxin in transgenic tobacco plants. We previously described a chimeric integral membrane reporter protein that traffics through Golgi to the lytic prevacuole where it was proteolytically processed. As a first step to isolate and clone the Kex2p-like protease in plant cells, we designed and used a similar chimeric reporter protein containing Kex2 cleavage sites to assay the Kex2p-like activity and to determine its substrate specificity in tobacco cells. Here we demonstrate that the Kex2 cleavage sites of the reporter were specifically processed by a protease activity with a substrate specificity characteristic of yeast Kex2p. This Kex2p-like protease in tobacco cells is also a Golgi-resident enzyme. Thus, the reporter protein provides a biochemical marker for studying protein traffic through the Golgi in plant cells. These results additionally should allow the design of synthetic substrates for use in biochemical purification of the plant enzyme.  相似文献   

15.
The Saccharomyces cerevisiae mating pheromone precursor, prepro-alpha-factor, can be translocated across yeast endoplasmic reticulum membranes post-translationally in an in vitro system. This characteristic makes prepro-alpha-factor potentially useful as a probe in the biochemical dissection of the mechanism of this basic cellular process. Efforts have been limited by the inability to isolate sufficient quantities of such secretory protein precursors in a translocation-competent form. We report here the one-step purification of chemical amounts of translocation-competent prepro-alpha-factor using nickel ion affinity chromatography on nitrilotriacetate resin. An oligonucleotide encoding 6 histidine residues was inserted into a genomic clone encoding prepro-alpha-factor 5' of the naturally occurring translational stop codon by site-directed mutagenesis. The construct was expressed at high levels in a SecY- strain of Escherichia coli. The produced preprotein was solubilized in 6 M guanidine hydrochloride and bound to nitrilotriacetate resin. Prepro-alpha-factor was recovered at a purity in excess of 95% by elution with 0.25 M imidazole, 8 M urea, which competitively displaced the histidine affinity tag from the nickel column. The chemical amounts of prepro-alpha-factor obtained in this way were determined to be competent for translocation across yeast microsomal membranes and for subsequent modifications such as signal sequence cleavage and N-linked glycosylation.  相似文献   

16.
We demonstrate that a virally encoded yeast 'killer' toxin is entering its eukaryotic target cell by endocytosis, subsequently travelling the yeast secretory pathway in reverse to exhibit its lethal effect. The K28 killer toxin is a secreted alpha/beta heterodimer that kills sensitive yeasts in a receptor-mediated fashion by blocking DNA synthesis in the nucleus. In vivo processing of the toxin precursor results in a protein whose beta-C-terminus carries the endoplasmic reticulum (ER) retention signal HDEL, which, as we show here, is essential for retrograde toxin transport. Yeast end3/4 mutants as well as cells lacking the HDEL receptor (Deltaerd2) or mutants defective in Golgi-to-ER protein recycling (erd1) are toxin resistant because the toxin can no longer enter and/or retrograde pass the cell. Site-directed mutagenesis further indicated that the toxin's beta-HDEL motif ensures retrograde transport, although in a toxin-secreting yeast the beta-C-terminus is initially masked by an R residue (beta-HDELR) until Kex1p cleavage uncovers the toxin's targeting signal in a late Golgi compartment. Prevention of Kex1p processing results in high-level secretion of a biologically inactive protein incapable of re-entering the secretory pathway. Finally, we present evidence that ER-to-cytosol toxin export is mediated by the Sec61p translocon and requires functional copies of the lumenal ER chaperones Kar2p and Cne1p.  相似文献   

17.
The structure of the tricarboxylic acid cycle enzyme malate dehydrogenase is highly conserved in various organisms. To test the extent of functional conservation, the rat mitochondrial enzyme and the enzyme from Escherichia coli were expressed in a strain of Saccharomyces cerevisiae containing a disruption of the chromosomal MDH1 gene encoding yeast mitochondrial malate dehydrogenase. The authentic precursor form of the rat enzyme, expressed using a yeast promoter and a multicopy plasmid, was found to be efficiently targeted to yeast mitochondria and processed to a mature active form in vivo. Mitochondrial levels of the polypeptide and malate dehydrogenase activity were found to be similar to those for MDH1 in wild-type yeast cells. Efficient expression of the E. coli mdh gene was obtained with multicopy plasmids carrying gene fusions encoding either a mature form of the procaryotic enzyme or a precursor form with the amino terminal mitochondrial targeting sequence from yeast MDH1. Very low levels of mitochondrial import and processing of the precursor form were obtained in vivo and activity could be demonstrated for only the expressed precursor fusion protein. Results of in vitro import experiments suggest that the percursor form of the E. coli protein associates with yeast mitochondria but is not efficiently internalized. Respiratory rates measured for isolated yeast mitochondria containing the mammalian or procaryotic enzyme were, respectively, 83 and 62% of normal, suggesting efficient delivery of NADH to the respiratory chain. However, expression of the heterologous enzymes did not result in full complementation of growth phenotypes associated with disruption of the yeast MDH1 gene.  相似文献   

18.
To investigate protein translocation in eukaryotes, we reconstituted a protein translocation system using the permeabilized spheroplasts (P-cells) of the fission yeast Schizosaccharomyces pombe. The precursor of a sex pheromone of Saccharomyces cerevisiae, prepro-alpha-factor, was translocated across the endoplasmic reticulum (ER) of S. pombe posttranslationally, and glycosylated to the same extent as in the ER of S. cerevisiae. This suggested that the size of N-linked core-oligosaccharide in the ER of S. pombe is similar to that in S. cerevisiae. This translocation into the ER of S. pombe was inhibited by puromycin, but the translocation in the P-cells of S. cerevisiae was not inhibited. This difference in sensitivity to puromycin was due to the membrane but not the cytosolic fraction. Our results suggested that the translocation machinery of S. pombe was sensitive to puromycin and different from that of S. cerevisiae.  相似文献   

19.
《The Journal of cell biology》1989,109(6):2641-2652
Genes that function in translocation of secretory protein precursors into the ER have been identified by a genetic selection for mutant yeast cells that fail to translocate a signal peptide-cytosolic enzyme hybrid protein. The new mutants, sec62 and sec63, are thermosensitive for growth and accumulate a variety of soluble secretory and vacuolar precursors whose electrophoretic mobilities coincide with those of the corresponding in vitro translated polypeptides. Proteolytic sensitivity of precursor molecules in extracts of mutant cells confirms that polypeptide translocation is blocked. Some form of interaction among the SEC61 (Deshaies, R. J., and R. Schekman. 1987. J. Cell Biol. 105:633-645), SEC62 and SEC63 gene products is suggested by the observation that haploid cells containing any pair of the mutations are inviable at 24 degrees C and show a marked enhancement of the translocation defect. The translocation defects of two mutants (sec62 and sec63) have been reproduced in vitro. sec63 microsomes display low and thermolabile translocation activity for prepro-alpha-factor (pp alpha F) synthesized with a cytosol fraction from wild type yeast. These gene products may constitute part of the polypeptide recognition or translocation apparatus of the ER membrane. Pulse-chase analysis of the translocation-defective mutants demonstrates that insertion of pp alpha F into the ER can proceed posttranslationally.  相似文献   

20.
The NS2 protein of hepatitis C virus is a transmembrane polypeptide.   总被引:17,自引:9,他引:8       下载免费PDF全文
The NS2 protein of hepatitis C virus (HCV) is released from its polyprotein precursor by two proteolytic cleavages. The N terminus of this protein is separated from the E2/p7 polypeptide by a cleavage thought to be mediated by signal peptidase, whereas the NS2-3 junction located at the C terminus is processed by a viral protease. To characterize the biogenesis of NS2 encoded by the BK strain of HCV, we have defined the minimal region of the polyprotein required for efficient cleavage at the NS2-3 site and analyzed the interaction of the mature polypeptide with the membrane of the endoplasmic reticulum (ER). We have observed that although cleavage can occur in vitro in the absence of microsomal membranes, synthesis of the polyprotein precursor in the presence of membranes greatly increases processing at this site. Furthermore, we show that the membrane dependency for efficient in vitro processing varies among different HCV strains and that host proteins located on the ER membrane, and in particular the signal recognition particle receptor, are required to sustain efficient proteolysis. By means of sedimentation analysis, protease protection assay, and site-directed mutagenesis, we also demonstrate that the NS2 protein derived from processing at the NS2-3 site is a transmembrane polypeptide, with the C terminus translocated in the lumen of the ER and the N terminus located in the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号