首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for the construction of an amperometric biosensor for detection of phenolic compounds based on covalent immobilization of laccase onto iron oxide nanoparticles (Fe(3)O(4)NPs) decorated carboxylated multiwalled carbon nanotubes (cMWCNTs)/polyaniline (PANI) composite electrodeposited onto a gold (Au) electrode. The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The biosensor showed optimum response within 3s at pH 6.0 (0.1M sodium acetate buffer) and 35°C, when operated at 0.3V vs. Ag/AgCl. Linear range, detection limit were 0.1-10μM (lower concentration range) and 10-500μM (higher concentration range), and 0.03μM respectively. The sensor measured total phenolic content in tea leaves extract. The enzyme electrode lost 25% of its initial activity after its 150 uses over a period of 4 months, when stored at 4°C.  相似文献   

2.
A comparison of the behaviour of three different rigid composite matrices for the construction of amperometric tyrosinase biosensors, which are widely used for the detection of phenolic compounds, is reported. The composite electrode matrices were, graphite-Teflon; reticulated vitreous carbon (RVC)-epoxy resin; and graphite-ethylene/propylene/diene (EPD) terpolymer. After optimization of the experimental conditions, different aspects regarding the stability of the three composite tyrosinase electrode designs were considered and compared. A better reproducibility of the amperometric responses was found with the graphite-EPD electrodes, whereas a longer useful lifetime was observed for the graphite-Teflon electrodes. The kinetic parameters of the tyrosinase reaction were calculated for eight different phenolic compounds, as well as their corresponding calibration plots. The general trend in sensitivity was graphite-EPD>graphite-Teflon>RVC-epoxy resin. A correlation between sensitivity and the catalytic efficiency of the enzyme reaction for each phenolic substrate was found. Furthermore, differences in the sensitivity order for the phenolic compounds were observed among the three biocomposite electrodes, which suggests that the nature of the electrode matrix influences the interactions in the tyrosinase catalytic cycle.  相似文献   

3.
The design and performance of an enzyme reactor (enzyme electrode) which features (i) incorporating nylon shavings onto which an enzyme is covalently bonded, (ii) a flat-surface combination pH electrode for proton monitoring, and (iii) a body providing an injection port for sample injection and washing and stirring capabilities is described. The reactor configuration described here offers good diffusional and partition characteristics which result in relatively fast response, good stability, simplicity of operation, low sample and reagent consumption, and adaptability to flow systems. Application to the determination of urea in standards and physiological salt solutions is demonstrated by use of immobilized urease (EC 3.5.1.5).  相似文献   

4.
The design of a new tyrosinase biosensor with improved stability and sensitivity is reported. The biosensor design is based on the construction of a graphite-Teflon composite electrode matrix in which the enzyme and colloidal gold nanoparticles are incorporated by simple physical inclusion. Experimental variables such as the colloidal gold loading into the composite matrix, the enzyme loading and the potential applied to the bioelectrode were optimized. The Tyr-Au(coll)-graphite-Teflon biosensor exhibited suitable amperometric responses at -0.10 V for the different phenolic compounds tested (catechol; phenol; 3,4-dimethylphenol; 4-chloro-3-methylphenol; 4-chlorophenol; 4-chloro-2-methylphenol; 3-methylphenol and 4-methylphenol). The limits of detection obtained were 3 nM for catechol, 3.3 microM for 4-chloro-2-methylphenol, and approximately 20 nM for the rest of phenolic compounds. The presence of colloidal gold into the composite matrix gives rise to enhanced kinetics of both the enzyme reaction and the electrochemical reduction of the corresponding o-quinones at the electrode surface, thus allowing the achievement of a high sensitivity. The biosensor exhibited an excellent renewability by simple polishing, with a lifetime of at least 39 days without apparent loss of the immobilized enzyme activity. The usefulness of the biosensor for the analysis of real samples was evaluated by performing the estimation of the content of phenolic compounds in water samples of different characteristics.  相似文献   

5.
Two different analysis techniques for on-line monitoring of glucose in biotechnological processes have been tested: an in situ enzyme electrode and a flow injection analysis system (FIA). The measuring ranges, detection limits, response times and the reliabilities of each system have been compared during monitoring of batch and continuous cultures of Saccharomyces cerevisiae.  相似文献   

6.
A carbon paste electrode modified with the adsorbed products of the electrochemical oxidation of adenosine triphosphate is described. The electrode was applied to the amperometric electrocatalytic detection of the reduced form of both nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate. The catalytic oxidation current shows a linear dependence on the concentration of the reduced form of nicotinamide adenine dinucleotide up to 1x10(-4)M, with a detection limit of 5x10(-9)M. Modified carbon paste electrodes were coated with an electrogenerated film of nonconducting poly(o-phenylenediamine) to obtain a stable amperometric response for at least 150h. In addition to static measurements, determination of both reduced cofactors was carried out in a flow injection analysis system with a thin-layer amperometric detection cell. The electrocatalytic monitoring of reduced nicotinamide adenine dinucleotide phosphate was applied to flow injection measurement of isocitrate dehydrogenase activity in serum. The results were in good agreement with those for the standard spectrophotometric test kit. The proposed method consumed less time and reagents and provided better precision than the standard method.  相似文献   

7.
A new biosensing flow injection method for the determination of alpha-amylase activity has been introduced. The method is based on the analysis of maltose produced during the hydrolysis of starch in the presence of alpha-amylase. Maltose determination in the flow system was allowed by the application of peroxide electrode equipped with an enzyme membrane. The membrane was obtained by immobilisation of glucose oxidase, alpha-glucosidase and optionally mutarotase on a cellophane, co-crosslinked by gelatin-glutaraldehyde together with bovine serum albumine. alpha-Glucosidase hydrolyses maltose to alpha-D-glucose, which is converted to beta-D-glucose by mutarotase. beta-D-Glucose is then determined via glucose oxidase. The new biosensor has the limit of detection of 50 nmol l(-1) maltose, which means 2 nkat ml(-1) in alpha-amylase activity units, when the reaction time of amylase was 5 min (determined with respect to a signal-to-noise ratio 3:1). When the reaction time of alpha-amylase was 30 min, the limit of detection was 0.5 nkat ml(-1). A linear range of current response was 0.1-3 mmol l(-1) maltose, with a response time of 35s. The biosensor was stable at least two months and retained 70% of its original activity (with mutarotase the stability is decreased to 3 weeks). When the enzyme membrane was stored in a dry state at 4 degrees C in a refrigerator, the lifetime was approximately 6 months (with mutarotase only 3 months).  相似文献   

8.
In this work, an automated flow‐based procedure for the screening of the effect of the different phenolic compounds on the chemiluminescence (CL) luminol–hydrogen peroxide–horseradish peroxidase (HRP) system is presented. This procedure involves the combination of multisyringe flow injection analysis (MFSIA) and sequential injection analysis (SIA) techniques and exploits the ability of the different subgroups of phenols, such as cholorophenols, nitrophenols, methylphenols and polyphenols, to enhance or inhibit the described CL system. The implementation of this reaction in the SIA–MSFIA system enabled favourable and precise conditions to evaluate the effect of phenolic compounds, as it involves an in‐line reaction between the phenolic derivative, hydrogen peroxide and peroxidase and subsequent oxidized HRP intermediates generation prior to the fast reaction with the chemiluminogenic reagent. Several studies were then performed with the aim of establishing the appropriate flow system configuration and reaction conditions. It was shown that phenol and chlorophenols produce an enhanced CL response and nitrophenols, methylphenols and polyphenols are inhibitors within the range of concentrations studied (1–100 mg/L). Based on these studies, the developed method was applied to the determination of total polyphenol and phenol content in wine/grape seeds and water samples, respectively, and the results obtained showed good agreement with those furnished by the corresponding Folin–Ciocalteu and 4‐aminoantipyrine reference methods. The developed approach is further pursued by designing an automated generic tool for performing studies of peroxidase‐catalysed CL reactions of luminol focused on the detection of compounds that will affect the rate of those reactions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Three recently reported chemiluminescence methods (based on reactions with alkaline luminol and hexacyanoferrate(III); acidic cerium(IV) and rhodamine B; and acidic permanganate with polyphosphates) for the determination of synephrine were re‐evaluated in terms of their selectivity towards this analyte in comparison to other phenolic compounds. A fourth reagent system, acidic soluble manganese(IV) and formaldehyde, was also examined. Each set of reagents was sensitive towards synephrine (limits of detection were 3 × 10?9, 5 × 10?8, 1 × 10?8 and 1 × 10?8 mol/L, respectively) but also responded with numerous other phenolic compounds, including some that are present in citrus fruit extracts, dietary supplements and/or biological fluids. It is therefore recommended that the determination of synephrine in these matrices should incorporate physical separation of sample components (e.g. chromatography or electrophoresis). In more general terms, this study illustrates that accurate percentage recoveries for an analyte in spiked samples (without validation against another analytical method) are insufficient to confirm the analytical utility of new flow‐injection analysis (FIA) procedures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A method is described for construction of an amperometric biosensor for detection of phenolic compounds based on covalent immobilization of laccase (Lac) onto manganese dioxide nanoparticles (MnO(2)NPs) decorated carboxylated multiwalled carbon nanotubes (cMWCNTs)/PANI composite electrodeposited onto a gold (Au) electrode through N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The biosensor showed optimum response at pH 5.5 (0.1M sodium acetate buffer) and 35°C, when operated at 0.3 V vs. Ag/AgCl. Linear range, response time, detection limit were 0.1-10 μM (lower concentration range) and 10-500 μM (higher concentration range), 4s and 0.04 μM, respectively. Biosensor measured total phenolic content in tea leaves extract. The enzyme electrode was used 150 times over a period of 5 months.  相似文献   

11.
A new method has been developed to incorporate the mediator, tetrathiafulvalene (TTF), to the electrode/solution interface of an amperometric biosensor. TTF was dissolved in methylphenyl polysiloxane (silicone oil) and embedded in a graphite disc electrode. The mediator was able to diffuse to the electrode surface at an electrocatalytically significant speed. The storage of TTF in the inert polysiloxane provided a long-lasting and stable mediator supply.

TTF-silicone oil electrodes with immobilized glucose oxidase, xanthine oxidase, or amino acid oxidase exhibited sensitive, fast and reproducible responses. The glucose oxidase electrode was very stable for at least 2 months when stored at 4°C. Together with flow injection analysis (FIA), the enzyme electrodes were reused for at least 500 repeated analyses during a 25 h operation without losing their initial activity.  相似文献   


12.
A new mediated amperometric biosensor for fructose is described. The sensor is based on a commercially available D-fructose dehydrogenase. The enzyme is incorporated in a carbon paste matrix containing Os(bpy)2Cl2 as redox mediator that achieves electron transfer at 0·1 V (versus Ag/AgCl) with maximum apparent current densities of 1·2 mA/cm2. The dependence of the steady-state current on the loading of the mediator and the enzyme, other electrode construction parameters, the operating potential, the pH and the temperature was studied. In the steady-state mode the response current was directly proportional to D-fructose concentration from 0·2 to 20mM with a detection limit of 35 μM (signal-to-noise ratio, S/N, 3). In the flow injection analysis mode the response current was directly proportional to D-fructose concentration from 0·5 to 15 M with a detection limit of 115 μM (S/N 3). The sensor was used for the determination of fructose in food samples in a flow injection system and validated with a commercial enzyme kit.  相似文献   

13.
A new type of chemically modified electrode based ring-disk electrode as the dual electrochemical detector (DECD) for high-performance liquid chromatography (HPLC) to simultaneously determine the monoamine neurotransmitters and glucose is described. The ring electrode was modified with an ion-exchange polymer-overoxidized polypyrrole (OPPy) and the disk electrode was modified with nano Au colloid and glucose oxidase (GOD). The electrochemical behaviors of dopamine (DA) and ascorbic acid (AA) at the OPPy chemically modified electrode (CME) were investigated by differential pulse voltammetry (DPV). It was found that the CME could permeate dopamine cations and repelled the ascorbate anions, which could be used to determine the monoamine neurotransmitters and avoid the interference of AA. The electrochemical behavior of glucose at the Nafion/GOD-Au colloid/GC CME was investigated by amperometry and flow injection analysis (FIA). It was found that the sensitivity of the CME increased apparently in determination of glucose. In order to obtain better separation and current responses of the analytes in HPLC-DECD, several operational parameters have been investigated. Under the optimum conditions, the method showed good stability and reproducibility. The application of this method coupled with microdialysis sampling for in vivo simultaneous determination of monoamine neurotransmitters and glucose in rat brain was satisfactory.  相似文献   

14.
The present study was focused on screening and characterization of tyrosinase enzyme produced by marine actinobacteria and its application in phenolic compounds removal from aqueous solution. A total of 20 strains were isolated from marine sediment sample and screened for tyrosinase production by using skimmed milk agar medium. Among 20 isolates, two isolates LK-4 and LK-20 showed zone of hydrolysis and these were taken for secondary screening by using tyrosiue agar medium. Based on the result of secondary screening LK-4 was selected for further analysis, such as tyrosinase assay, protein content and specific activity of the enzyme. The tyrosinase enzyme was produced in a SS medium and was partially purified by ammonium sulfate precipitation, dialysis and SDS PAGE. The isolate (LK-4) was identified as Streptomyces espinosus using 16S rRNA gene sequencing and named as "Streptomyces espinosus strain LK4 (KF806735)". The tyrosinase enzyme was immobilized in sodium alginate which was applied to remove phenolic compounds from water. The enzyme efficiently removed the phenolic compounds from aqueous solution within few hours which indicated that tyrosinasc enzyme produced by Streptomyces espinosus strain LK-4 can be potently used for the removal of phenol and phenolic compounds from wastewater in industries.  相似文献   

15.
A new biosensor for specific determination of sucrose was developed using an oxidoreductase of Zymomonas mobilis and invertase. Cells of Z. mobilis were permeabilized with toluene in order to utilize the enzymes of glucose-fructose oxidoreductase and gluconolactonase inside the intact cells. Permeabilized cells and invertase were coimmobilized in a gelatin membrane, and a whole cell enzyme electrode was constructed by fixing the membrane on a pH electrode. The production of hydrogen ion was detected using the biosensor-connected microcomputer, and the concentration of sucrose was determined by using both the initial rate and the steady-state methods. Optimum conditions for biosensor response were pH 6.2 and temperature 35 degrees C. The effect of interfering compounds on the electrode response was investigated, and the interference by various sugars was eliminated by determining sucrose concentration using the steady-state method. The biosensor developed is simple and reproducible, and the calibration curve for sucrose is linear up to 70 g/L.  相似文献   

16.
Urea was determined using fluorometry with flow injection analysis. O-phthalaldehyde (OPA) reacts with enzymatically generated ammonia and sulfite in alkaline medium to give a highly fluorescent compound that has an excitation wavelength of 372 nm and an emission wavelength of about 430 nm. The method is more selective to ammonia than the one which uses mercaptoethanol in place of the sulfite. Urease was immobilized to a Pall Immunodyne membrane which is commercially available. The immobilization occurs through covalent bonding which results in a highly stable enzyme preparation. The enzymatic membrane was fitted in a 5 cm long, 0.125 inch o.d. Teflon tubing which served as the enzymatic reactor. The system is difficult to use for the analysis of urea in serum because some compounds normally present in serum fluoresce at the same wavelength. This results in higher values for urea. If the reaction system is to be used for the evaluation of urea in serum, a blank should be run so that urea concentration can be calculated by difference.  相似文献   

17.
A flow injection system, incorporating an acetylcholinesterase (AChE) single bead string reactor (SBSR), for the determination of some organophosphorous (azinphos-ethyl, azinphos-methyl, bromophos-methyl, dichlorovos, fenitrothion, malathion, paraoxon, parathion-ethyl and parathion-methyl) and carbamate insecticides (carbofuran and carbaryl) is presented. The detector is a simple pH electrode with a wall-jet entry. Variations in enzyme activity due to inhibition are measured from pH changes when the substrate (acetylcholine) is injected before and after the passage of the solution containing the insecticide. The percentage inhibition of enzyme activity is correlated to the insecticide concentration. Several parameters influencing the performance of the system are studied and discussed. The detection limits of the insecticides ranged from 0.5 to 275 ppb. The determination of these compounds was conducted in Hepes buffer and a synthetic sea water preparation. The enzyme reactor can be regenerated after inhibition with a dilute solution of 2-PAM and be reused for analysis. The immobilized enzyme did not lose any activity up to 12 weeks when stored at 4 degrees C.  相似文献   

18.
An enzyme electrode for on-line determination of ethanol and methanol   总被引:1,自引:0,他引:1  
Since a stable alcohol oxidase with a high specific activity is not commercially available, we propose to produce and purify this enzyme from a strain of the yeast Hansenula polymorpha. This alcohol oxidase was immobilized into a gelatin matrix and its activity was estimated by a pO(2) sensor. The enzyme electrode obtained was then used in a continuous flow system to measure methanol or ethanol concentrations. The sample oxygen content dependence of the signal was minimized by the support properties. Measuring time for each sample were less than two minutes including response data treatment and rinsing step. The enzyme electrode response was set for ethanol from 0.5mM to 15mM and for methanol from 10mM to 300mM. On repeated use, the electrode signal for 10mM of ethanol was stable for at least 500 assays. Analysis have been performed in different beverages such as wine and beer, and the results compared to those obtained with classical methods of analysis.  相似文献   

19.
Summary Laccase (p-diphenol, O2 oxido-reductase, E.C. 1.10.3.2) from Botrytis cinerea was immobilized in a gelatin support on an O2 sensing electrode. The enzyme was copolymerized with the inert protein using glutaraldehyde (1.25 % w/w) on the hydrophobic selective gas membrane of a pO2 sensor and this was covered with a Nuclepore polycarbonate microporous film (0.03 m). The enzyme electrode was used in a continuous-flow system to measure the concentration of a wide range of phenolic substrates. The measuring time of each sample was about 1.5 min including response and rinsing times. The electrode response was set for hydroquinone up to 0.8 mM with high reproducibility and less than 5 % error.The electrode response for hydroquinone concentration of 0.25 mM was stable with repeated use for at least 800 assays without significant loss of activity.  相似文献   

20.
A piezoelectric DNA biosensor was prepared by immobilizing DNA probes on a quartz crystal microbalance (QCM) using a lipid-based method. A QCM electrode was coated with a hybrid bilayer membrane composed of an octadecanethiol monolayer and a lipid monolayer containing biotinylated lipids to establish biotin groups on the electrode surface. A DNA biosensor was prepared by sequentially immobilizing avidin and the biotinylated probe. The DNA biosensor was stable throughout repeated surface regeneration and showed higher sensitivity than that prepared by the conventional chemical method using diimide. We also optimized the surface regeneration conditions and flow rate for flow injection analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号