首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urinary tract infections (UTIs) affect millions of people each year. Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU) in humans. Persons affected by ABU may carry a particular E. coli strain for extended periods of time without any symptoms. In contrast to uropathogenic E. coli (UPEC) that cause symptomatic UTI, very little is known about the mechanisms by which these strains colonize the urinary tract. Here, we have investigated the growth characteristics in human urine as well as adhesin repertoire of nine ABU strains; the ability of ABU strains to compete against the UPEC strain CFT073 was also studied. The different ABU strains displayed a wide variety of the measured characteristics. Half of the ABU strains displayed functional type 1 fimbriae while only one expressed functional P fimbriae. A good correlation between the growth rate of a particular strain and the survival of the strain in competition against CFT073 was observed. Our results support the notion that for strains with reduced capacity to express fimbriae, the ability to grow fast in human urine becomes crucial for colonization of the urinary tract.  相似文献   

2.
Biofilm-associated bacterial infections have a major impact on artificial implants such as urinary catheters, often with devastating consequences. The capacity of a microorganism to form a biofilm on a surface depends on the nature of the surface and its conditioning. When a urinary catheter is exposed to urine, various components adsorb onto the surface and form a conditioning film, which becomes the real interface where microbial interaction takes place. It follows that the material constituting the catheter determines the composition of the conditioning film, which in turn influences which microorganisms can attach. Urinary tract infectious (UTI) Escherichia coli range in pathogenicity and the damage they cause--from benign asymptomatic bacteriuria (ABU) strains, which inflict no or few problems to the host, to uropathogenic E. coli (UPEC) strains, which are virulent and often cause severe symptoms and complications. We have found that whereas ABU strains produce better biofilms on polystyrene and glass, UPEC strains have a clear competitive advantage during biofilm growth on catheter surfaces. Our results indicate that some silicone and silicone-latex catheters actually select for and promote biofilm formation of the most virulent group of UTI E. coli strains, hardly a desirable situation for the catheterized patient.  相似文献   

3.
4.
The ability of Escherichia coli to colonize both intestinal and extraintestinal sites is driven by the presence of specific virulence factors, among which are the autotransporter (AT) proteins. Members of the trimeric AT adhesin family are important virulence factors for several gram-negative pathogens and mediate adherence to eukaryotic cells and extracellular matrix (ECM) proteins. In this study, we characterized a new trimeric AT adhesin (UpaG) from uropathogenic E. coli (UPEC). Molecular analysis of UpaG revealed that it is translocated to the cell surface and adopts a multimeric conformation. We demonstrated that UpaG is able to promote cell aggregation and biofilm formation on abiotic surfaces in CFT073 and various UPEC strains. In addition, UpaG expression resulted in the adhesion of CFT073 to human bladder epithelial cells, with specific affinity to fibronectin and laminin. Prevalence analysis revealed that upaG is strongly associated with E. coli strains from the B2 and D phylogenetic groups, while deletion of upaG had no significant effect on the ability of CFT073 to colonize the mouse urinary tract. Thus, UpaG is a novel trimeric AT adhesin from E. coli that mediates aggregation, biofilm formation, and adhesion to various ECM proteins.  相似文献   

5.
Fifty nine Escherichia coli strains obtained from patients with upper or lower urinary tract infections (UTI) and 30 E. coli strains isolated from stools of healthy individuals were tested for hemolytic and cytotoxic activities. Forty four percent of uropathogenic E. coli (UPEC) and 3.3% of fecal E. coli were hemolytic. Among the hemolytic UPEC, 92% produced alpha-hemolysin. A cytotoxic activity was detected in culture filtrates of 71% of UPEC strains and 30% of fecal E. coli. No relationship was found between cytotoxic and hemolytic activities or between cytotoxic titers and UPEC origin (upper or lower UTI). E. coli cytotoxin has a cytocidal activity against some epithelioid cultured cell lines (Vero, HeLa and Hep-2) but was almost inactive for avian-fibroblast cells. Cytotoxin-affected cells appeared rounded, refractile and detached from the surface of the vessel. Some characteristics exhibited by the cytotoxin as the morphological response induced on cells, the increasing of cytopathic effect with time, its irreversible cytocidal activity and its heat-lability resemble the properties described for E. coli Verotoxin (VT). Adherence to uroepithelial cells is recognized as a virulence factor for UPEC. It is suggested that cell damage by cytotoxic and adhering UPEC might contribute to E. coli virulence to urinary tract.  相似文献   

6.
7.
From October 1999 to July 2001, a prospective cohort study was conducted to assess the intestinal Escherichia coli population dynamics of 23 sexually active couples. We tested the hypothesis that intestinal persistence and predominance of specific E. coli strains, co-colonization of sex partners with the same E. coli strain, and the intestinal diversity of fecal E. coli, contribute to recurrent urinary tract infection (UTI). E. coli isolates causing UTI, asymptomatic bacteriuria (ABU), or intestinal co-colonization were evaluated by ERIC2 PCR and compared with strains recovered exclusively from stool samples with respect to intestinal persistence, predominance, and diversity. Contrary to our hypothesis, UTI-causing strains exhibited similar levels of intestinal persistence and predominance as did fecal strains, and UTI episodes were not associated with shifts in fecal E. coli diversity. In contrast, intestinal co-colonization strains exhibited greater persistence and predominance than did fecal strains and were more likely to cause ABU, and co-colonization episodes were associated with significantly increased fecal E. coli diversity. Nonetheless, intestinal co-colonization strains were not associated with UTI. These findings suggest that E. coli strains involved in co-colonization may be more important contributors to intestinal E. coli dynamics than to UTI pathogenesis.  相似文献   

8.
Uncomplicated urinary tract infection (UTI) caused by uropathogenic Escherichia coli(UPEC) is a serious problem not only among humans but also in companion animals such as dogs and cats. The uropathogenic specific protein gene (usp ) is preferentially distributed in UPEC isolates from dogs and cats compared with the distribution of usp in E. coli strains from feces of healthy dogs and cats and this pattern of distribution resembles that observed in human UPEC strains. The UPEC strains from companion animals share common O serotypes like O1, O2, O4, O6, O16, O18, O22, O25 and O75 as those reported for human UPEC. The size variation of the pathogenicity island that includes usp in UPEC from dogs and cats was almost similar to those seen in human UPEC. We propose that dogs and cats are the alternative reservoirs for UPEC strains that are associated with human UTI.  相似文献   

9.
ABSTRACT: BACKGROUND: Uropathogenic strains of Escherichia coli cause symptomatic infections whereas asymptomatic bacteriuria (ABU) strains are well adapted for growth in the human urinary tract, where they establish long-term bacteriuria. Human urine is a very complex growth medium that could be perceived by certain bacteria as a stressful environment. To investigate a possible imbalance between endogenous oxidative response and antioxidant mechanisms, lipid oxidative damage estimated as thiobarbituric acid reactive substances (TBARS) content was evaluated in twenty-one E. coli belonging to various pathovars and phylogenetic groups. Antioxidant defense mechanisms were also analysed. RESULTS: During exponential growth in urine, TBARS level differs between strains, without correlation with the ability to grow in urine which was similarly limited for commensal, ABU and uropathogenic strains. In addition, no correlation between TBARS level and the phylogroup or pathogenic group is apparent. The growth of ABU strain 83972 was associated with a high level of TBARS and more active antioxidant defenses that reduce the imbalance. CONCLUSIONS: Our results indicate that growth capacity in urine is not a property of ABU strains. However, E. coli isolates respond very differently to this stressful environment. In strain ABU 83972, on one hand, the increased level of endogenous reactive oxygen species may be responsible for adaptive mutations. On the other hand, a more active antioxidant defense system could increase the capacity to colonize the bladder.  相似文献   

10.
Uropathogenic Escherichia coli (UPEC) strains are responsible for the majority of uncomplicated urinary tract infections, which can present clinically as cystitis or pyelonephritis. UPEC strain CFT073, isolated from the blood of a patient with acute pyelonephritis, was most cytotoxic and most virulent in mice among our strain collection. Based on the genome sequence of CFT073, microarrays were utilized in comparative genomic hybridization (CGH) analysis of a panel of uropathogenic and fecal/commensal E. coli isolates. Genomic DNA from seven UPEC (three pyelonephritis and four cystitis) isolates and three fecal/commensal strains, including K-12 MG1655, was hybridized to the CFT073 microarray. The CFT073 genome contains 5,379 genes; CGH analysis revealed that 2,820 (52.4%) of these genes were common to all 11 E. coli strains, yet only 173 UPEC-specific genes were found by CGH to be present in all UPEC strains but in none of the fecal/commensal strains. When the sequences of three additional sequenced UPEC strains (UTI89, 536, and F11) and a commensal strain (HS) were added to the analysis, 131 genes present in all UPEC strains but in no fecal/commensal strains were identified. Seven previously unrecognized genomic islands (>30 kb) were delineated by CGH in addition to the three known pathogenicity islands. These genomic islands comprise 672 kb of the 5,231-kb (12.8%) genome, demonstrating the importance of horizontal transfer for UPEC and the mosaic structure of the genome. UPEC strains contain a greater number of iron acquisition systems than do fecal/commensal strains, which is reflective of the adaptation to the iron-limiting urinary tract environment. Each strain displayed distinct differences in the number and type of known virulence factors. The large number of hypothetical genes in the CFT073 genome, especially those shown to be UPEC specific, strongly suggests that many urovirulence factors remain uncharacterized.  相似文献   

11.
Escherichia coli is the major aetiological agent of urinary tract infections (UTI). Like diarrhoeagenic strains of E. coli, uropathogenic isolates possess virulence determinants that distinguish them from commensal strains and allow them to produce the clinical manifestations associated with UTI. Several autotransporter proteins have been associated with the ability of E. coli, and other Gram-negative bacteria, to cause disease. Recently, we described the existence within uropathogenic E. coli (UPEC) strains of Sat, a toxin of the serine protease autotransporter of Enterobacteriaceae (SPATE) subfamily. Using features common to proteins secreted via the autotransporter pathway we have identified nine additional autotransporter proteins from the genomic sequence data of UPEC CFT073. Surprisingly, two additional members of the SPATE subfamily were identified. One protein, designated PicU, was homologous to the Pic protein identified in Shigella flexneri and enteroaggregative E. coli. The PicU protein was expressed and investigated for functional activity.  相似文献   

12.
13.
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include human uropathogenic E. coli (UPEC) and avian pathogenic E. coli (APEC). Regardless of host of origin, ExPEC strains share many traits. It has been suggested that these commonalities may enable APEC to cause disease in humans. Here, we begin to test the hypothesis that certain APEC strains possess potential to cause human urinary tract infection through virulence genotyping of 1,000 APEC and UPEC strains, generation of the first complete genomic sequence of an APEC (APEC O1:K1:H7) strain, and comparison of this genome to all available human ExPEC genomic sequences. The genomes of APEC O1 and three human UPEC strains were found to be remarkably similar, with only 4.5% of APEC O1's genome not found in other sequenced ExPEC genomes. Also, use of multilocus sequence typing showed that some of the sequenced human ExPEC strains were more like APEC O1 than other human ExPEC strains. This work provides evidence that at least some human and avian ExPEC strains are highly similar to one another, and it supports the possibility that a food-borne link between some APEC and UPEC strains exists. Future studies are necessary to assess the ability of APEC to overcome the hurdles necessary for such a food-borne transmission, and epidemiological studies are required to confirm that such a phenomenon actually occurs.  相似文献   

14.
Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infection and engage in a coordinated genetic and molecular cascade to colonize the urinary tract. Disrupting the assembly and/or function of virulence factors and bacterial biofilms has emerged as an attractive target for the development of new therapeutic strategies to prevent and treat urinary tract infection, particularly in the era of increasing antibiotic resistance among human pathogens. UPEC vary widely in their genetic and molecular phenotypes and more data are needed to understand the features that distinguish isolates as more or less virulent and as more robust biofilm formers or poor biofilm formers. Curli are extracellular functional amyloid fibers produced by E. coli that contribute to pathogenesis and influence the host response during urinary tract infection (UTI). We have examined the production of curli and curli-associated phenotypes including biofilm formation among a specific panel of human clinical UPEC that has been studied extensively in the mouse model of UTI. Motility, curli production, and curli-associated biofilm formation attached to plastic were the most prevalent behaviors, shared by most clinical isolates. We discuss these results in the context on the previously reported behavior and phenotypes of these isolates in the murine cystitis model in vivo.  相似文献   

15.
To analyze whether Escherichia coli strains that cause urinary tract infections (UPEC) share virulence characteristics with the diarrheagenic E. coli (DEC) pathotypes and to recognize their genetic diversity, 225 UPEC strains were examined for the presence of various properties of DEC and UPEC (type of interaction with HeLa cells, serogroups and presence of 30 virulence genes). No correlation between adherence patterns and serogroups was observed. Forty-five serogroups were found, but 64% of the strains belonged to one of the 12 serogroups (O1, O2, O4, O6, O7, O14, O15, O18, O21, O25, O75, and O175) and carried UPEC virulence genes (pap, hly, aer, sfa, cnf). The DEC genes found were: aap, aatA, aggC, agg3C, aggR, astA, eae, ehly, iha, irp2, lpfA(O113), pet, pic, pilS, and shf. Sixteen strains presented aggregative adherence and/or the aatA sequence, which are characteristics of enteroaggregative E. coli (EAEC), one of the DEC pathotypes. In summary, certain UPEC strains may carry DEC virulence properties, mostly associated to the EAEC pathotype. This finding raises the possibility that at least some faecal EAEC strains might represent potential uropathogens. Alternatively, certain UPEC strains may have acquired EAEC properties, becoming a potential cause of diarrhoea.  相似文献   

16.
Escherichia coli strains causing urinary tract infection (UTI) are increasingly recognized as belonging to specific clones. E. coli clone O25b:H4-ST131 has recently emerged globally as a leading multi-drug resistant pathogen causing urinary tract and bloodstream infections in hospitals and the community. While most molecular studies to date examine the mechanisms conferring multi-drug resistance in E. coli ST131, relatively little is known about their virulence potential. Here we examined E. coli ST131 clinical isolates from two geographically diverse collections, one representing the major pathogenic lineages causing UTI across the United Kingdom and a second representing UTI isolates from patients presenting at two large hospitals in Australia. We determined a draft genome sequence for one representative isolate, E. coli EC958, which produced CTX-M-15 extended-spectrum β-lactamase, CMY-23 type AmpC cephalosporinase and was resistant to ciprofloxacin. Comparative genome analysis indicated that EC958 encodes virulence genes commonly associated with uropathogenic E. coli (UPEC). The genome sequence of EC958 revealed a transposon insertion in the fimB gene encoding the activator of type 1 fimbriae, an important UPEC bladder colonization factor. We identified the same fimB transposon insertion in 59% of the ST131 UK isolates, as well as 71% of ST131 isolates from Australia, suggesting this mutation is common among E. coli ST131 strains. Insertional inactivation of fimB resulted in a phenotype resembling a slower off-to-on switching for type 1 fimbriae. Type 1 fimbriae expression could still be induced in fimB-null isolates; this correlated strongly with adherence to and invasion of human bladder cells and bladder colonisation in a mouse UTI model. We conclude that E. coli ST131 is a geographically widespread, antibiotic resistant clone that has the capacity to produce numerous virulence factors associated with UTI.  相似文献   

17.
Serum amyloid A (SAA) is an acute phase protein involved in the homeostasis of inflammatory responses and appears to be a vital host defense component with protective anti-infective properties. SAA expression remains poorly defined in many tissues, including the urinary tract which often faces bacterial challenge. Urinary tract infections (UTIs) are usually caused by strains of uropathogenic Escherichia coli (UPEC) and frequently occur among otherwise healthy individuals, many of whom experience bouts of recurrent and relapsing infections despite the use of antibiotics. To date, whether SAA is present in the infected urothelium and whether or not the induction of SAA can protect the host against UPEC is unclear. Here we show, using mouse models coupled with immunofluorescence microscopy and quantitative RT-PCR, that delivery of UPEC either directly into the urinary tract via catheterization or systemically via intraperitoneal injection triggers the expression of SAA. As measured by ELISA, serum levels of SAA1/2 were also transiently elevated in response to UTI, but circulating SAA3 levels were only up-regulated substantially following intraperitoneal inoculation of UPEC. In in vitro assays, physiological relevant levels of SAA1/2 did not affect the growth or viability of UPEC, but were able to block biofilm formation by the uropathogens. We suggest that SAA functions as a critical host defense against UTIs, preventing the formation of biofilms both upon and within the urothelium and possibly providing clinicians with a sensitive serological marker for UTI.  相似文献   

18.
Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract.  相似文献   

19.
Uropathogenic Escherichia coli (UPEC), a member of extraintestinal pathogenic E. coli, cause ~80% of community-acquired urinary tract infections (UTI) in humans. UPEC initiates its colonization in epithelial cells lining the urinary tract with a complicated life cycle, replicating and persisting in intracellular and extracellular niches. Consequently, UPEC causes cystitis and more severe form of pyelonephritis. To further understand the virulence characteristics of UPEC, we investigated the roles of BarA-UvrY two-component system (TCS) in regulating UPEC virulence. Our results showed that mutation of BarA-UvrY TCS significantly decreased the virulence of UPEC CFT073, as assessed by mouse urinary tract infection, chicken embryo killing assay, and cytotoxicity assay on human kidney and uroepithelial cell lines. Furthermore, mutation of either barA or uvrY gene reduced the production of hemolysin, lipopolysaccharide (LPS), proinflammatory cytokines (TNF-α and IL-6) and chemokine (IL-8). The virulence phenotype was restored similar to that of wild-type by complementation of either barA or uvrY gene in trans. In addition, we discussed a possible link between the BarA-UvrY TCS and CsrA in positively and negatively controlling virulence in UPEC. Overall, this study provides the evidences for BarA-UvrY TCS regulates the virulence of UPEC CFT073 and may point to mechanisms by which virulence regulations are observed in different ways may control the long-term survival of UPEC in the urinary tract.  相似文献   

20.
Extraintestinal pathogenic Escherichia coli (ExPEC) are of significant health concern. The emergence of drug resistant E. coli with high virulence potential is alarming. Lack of sufficient data on transmission dynamics, virulence spectrum and antimicrobial resistance of certain pathogens such as the uropathogenic E. coli (UPEC) from countries with high infection burden, such as India, hinders the infection control and management efforts. In this study, we extensively genotyped and phenotyped a collection of 150 UPEC obtained from patients belonging to a semi-urban, industrialized setting near Pune, India. The isolates representing different clinical categories were analyzed in comparison with 50 commensal E. coli isolates from India as well as 50 ExPEC strains from Germany. Virulent strains were identified based on hemolysis, haemagglutination, cell surface hydrophobicity, serum bactericidal activity as well as with the help of O serotyping. We generated antimicrobial resistance profiles for all the clinical isolates and carried out phylogenetic analysis based on repetitive extragenic palindromic (rep)-PCR. E. coli from urinary tract infection cases expressed higher percentages of type I (45%) and P fimbriae (40%) when compared to fecal isolates (25% and 8% respectively). Hemolytic group comprised of 60% of UPEC and only 2% of E. coli from feces. Additionally, we found that serum resistance and cell surface hydrophobicity were not significantly (p = 0.16/p = 0.51) associated with UPEC from clinical cases. Moreover, clinical isolates exhibited highest resistance against amoxicillin (67.3%) and least against nitrofurantoin (57.3%). We also observed that 31.3% of UPEC were extended-spectrum beta-lactamase (ESBL) producers belonging to serotype O25, of which four were also positive for O25b subgroup that is linked to B2-O25b-ST131-CTX-M-15 virulent/multiresistant type. Furthermore, isolates from India and Germany (as well as global sources) were found to be genetically distinct with no evidence to espouse expansion of E. coli from India to the west or vice-versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号