首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
sp2-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4), cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.  相似文献   

2.
Sesquicillin, isolated from fungal fermentation broth, strongly induced G1 phase arrest in human breast cancer cells. During G1 phase arrest, the expression level of cyclin D1, cyclin A, and cyclin E was decreased, and the expression of CDK (cyclin-dependent-kinase) inhibitor, protein p21(Waf1/Cip1), was increased in a time-dependent manner in a breast cancer cell MCF-7. Interestingly, the G1 phase arrest induced by sesquicillin also occurred independently of the tumor suppressor protein, p53. Sesquicillin inhibits the proliferation of MCF-7 via G1 phase arrest in association with the induction of CDK inhibitor protein, p21(Waf1/Cip1), and the reduction of G1 phase related-cyclin proteins.  相似文献   

3.
4.
Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent present in green tea, is a promising chemopreventive agent. We recently showed that green tea polyphenols exert remarkable preventive effects against prostate cancer in a mouse model and many of these effects are mediated by the ability of polyphenols to induce apoptosis in cancer cells [Proc. Natl. Acad. Sci. USA 98 (2001) 10350]. Earlier, we showed that EGCG causes a G0/G1 phase cell cycle arrest and apoptosis of both androgen-sensitive LNCaP and androgen-insensitive DU145 human prostate carcinoma cells, irrespective of p53 status [Toxicol. Appl. Pharmacol. 164 (2000) 82]. Here, we provide molecular understanding of this effect. We tested a hypothesis that EGCG-mediated cell cycle dysregulation and apoptosis is mediated via modulation of cyclin kinase inhibitor (cki)-cyclin-cyclin-dependent kinase (cdk) machinery. As shown by immunoblot analysis, EGCG treatment of LNCaP and DU145 cells resulted in significant dose- and time-dependent (i) upregulation of the protein expression of WAF1/p21, KIP1/p27, INK4a/p16, and INK4c/p18, (ii) down-modulation of the protein expression of cyclin D1, cyclin E, cdk2, cdk4, and cdk6, but not of cyclin D2, (iii) increase in the binding of cyclin D1 toward WAF1/p21 and KIP1/p27, and (iv) decrease in the binding of cyclin E toward cdk2. Taken together, our results suggest that EGCG causes an induction of G1 phase ckis, which inhibits the cyclin-cdk complexes operative in the G0/G1 phase of the cell cycle, thereby causing an arrest, which may be an irreversible process ultimately leading to apoptotic cell death. This is the first systematic study showing the involvement of each component of cdk inhibitor-cyclin-cdk machinery during cell cycle arrest and apoptosis of human prostate carcinoma cells by EGCG.  相似文献   

5.
We have recently shown that curcumin induces apoptosis in prostate cancer cells through Bax translocation to mitochondria and caspase activation, and enhances the therapeutic potential of TRAIL. However, the molecular mechanisms by which it causes growth arrest are not well-understood. We studied the molecular mechanism of curcumin-induced cell cycle arrest in prostate cancer androgen-sensitive LNCaP and androgen-insensitive PC-3 cells. Treatment of both cell lines with curcumin resulted in cell cycle arrest at G1/S phase and that this cell cycle arrest is followed by the induction of apoptosis. Curcumin induced the expression of cyclin-dependent kinase (CDK) inhibitors p16/INK4a, p21/WAF1/CIP1 and p27/KIP1, and inhibited the expression of cyclin E and cyclin D1, and hyperphosphorylation of retinoblastoma (Rb) protein. Lactacystin, an inhibitor of 26 proteasome, blocks curcumin-induced down-regulation of cyclin D1 and cyclin E proteins, suggesting their regulation at level of posttranslation. The suppression of cyclin D1 and cyclin E by curcumin may inhibit CDK-mediated phosphorylation of pRb protein. The inhibition of p21/WAF1/CIP1 by siRNA blocks curcumin-induced apoptosis, thus establishing a link between cell cycle and apoptosis. These effects of curcumin result in the proliferation arrest and disruption of cell cycle control leading to apoptosis. Our study suggests that curcumin can be developed as a chemopreventive agent for human prostate cancer.  相似文献   

6.
Furano-1,2-naphthoquinone (FNQ), prepared from 2-hydroxy-1,4-naphthoquinone and chloroacetaldehyde in an efficient one-pot reaction, exhibits an anti-carcinogenic effect. FNQ exerted anti-proliferative activity with the G(2)/M cell cycle arrest and apoptosis in A549 cells. FNQ-induced G(2)/M arrest was correlated with a marked decrease in the expression levels of cyclin A and cyclin B, and their activating partner cyclin-dependent kinases (Cdk) 1 and 2 with concomitant induction of p53, p21, and p27. FNQ-induced apoptosis was accompanied with Bax up-regulation and the down-regulation of Bcl-2, X-linked inhibitor of apoptosis (XIAP), and survivin, resulting in cytochrome c release and sequential activation of caspase-9 and caspase-3. Western blot analysis revealed that FNQ suppressed EGFR phosphorylation and JAK2, STAT3, and STAT5 activation, but increased in activation of p38 MAPK and c-Jun NH2-terminal kinase (JNK) stress signal. The combined treatment of FNQ with AG1478 (a specific EGFR inhibitor) significantly enhanced the G(2)/M arrest and apoptosis, and also led to up-regulation in Bax, p53, p21, p27, release of mitochondrial cytochrome c, and down-regulation of Bcl-2, XIAP, survivin, cyclin A, cyclin B, Cdk1, and Cdk2 in A549 cells. These findings suggest that FNQ-mediated cytotoxicity of A549 cell related with the G(2)/M cell cycle arrest and apoptosis via inactivation of EGFR-mediated signaling pathway.  相似文献   

7.
Iejimalide B, a marine macrolide, causes growth inhibition in a variety of cancer cell lines at nanomolar concentrations. We have investigated the effects of Iejimalide B on cell cycle kinetics and apoptosis in the p53+/AR+ LNCaP and p53-/AR- PC-3 prostate cancer cell lines. Iejimalide B, has a dose and time dependent effect on cell number (as measured by crystal violet assay) in both cell lines. In LNCaP cells Iejimalide B induces a dose dependent G0/G1 arrest and apoptosis at 48 h (as measured by Apo-BrdU staining). In contrast, Iejimalide B initially induces G0/G1 arrest followed by S phase arrest but does not induce apoptosis in PC-3 cells. qPCR and Western analysis suggests that Iejimalide B modulates the steady state level of many gene products associated with cell cycle (including cyclins D, E, and B and p21(waf1/cip1)) and cell death (including survivin, p21B and BNIP3L) in LNCaP cells. In PC-3 cells Iejimalide B induces the expression of p21(waf1/cip1), down regulates the expression of cyclin A, and does not modulate the expression of the genes associated with cell death. Comparison of the effects of Iejimalide B on the two cell lines suggests that Iejimalide B induces cell cycle arrest by two different mechanisms and that the induction of apoptosis in LNCaP cells is p53-dependent.  相似文献   

8.
The proto-oncogene c-myc is a key player in cell-cycle regulation and is deregulated in a broad range of human cancers and cell proliferation disorders. Here we reported that overexpression of c-myc in human embryonic lung fibroblasts (HEL) that have low endogenous c-myc enriched S phase cells with increased expression of cyclin D3, E, A, Cdk2, and Cdk4, and decreased expression of p21 and p27. To the opposite, using RNAi to downregulate c-myc expression in A549 cells that have high endogenous c-myc enriched G1 phase cells with decreased expression of cyclin D3, E, A, Cdk2, Cdk4, and increased expression of p21 and p27. We found that cyclin A expression was the most susceptive to changes in c-myc levels and essential in c-myc-modulated cell cycle pathway via co-transfection, however, cyclin D1 showed no change between treated and control groups in either HEL or A549 cells. Our results indicated that upregulation of c-myc expression promotes cell cycling in HEL cells, whereas downregulation of c-myc expression causes G1 phase arrest in A549 cells, and the c-myc-mediated cell-cycle regulation pathway was dependent on cyclin A and involved cyclin D3, E, Cdk2, Cdk4, p21, and p27, but not cyclin D1.  相似文献   

9.
For gastric cancers, the antineoplastic activity of cannabinoids has been investigated in only a few reports and knowledge regarding the mechanisms involved is limited. We have reported previously that treatment of gastric cancer cells with a cannabinoid agonist significantly decreased cell proliferation and induced apoptosis. Here, we evaluated the effects of cannabinoids on various cellular mediators involved in cell cycle arrest in gastric cancer cells. AGS and MKN-1 cell lines were used as human gastric cancer cells and WIN 55,212-2 as a cannabinoid agonist. Cell cycles were analyzed by flow cytometry and western blotting. Treatment with WIN 55,212-2 arrested the cell cycle in the G0/G1 phase. WIN 55,212-2 also upregulated phospho-ERK1/2, induced Kip1/p27 and Cip1/WAF1/p21 expression, decreased cyclin D1 and cyclin E expression, decreased Cdk 2, Cdk 4, and Cdk 6 expression levels, and decreased phospho-Rb and E2F-1 expression. ERK inhibitor decreased the proportion of G0/G1 phase which was induced by WIN 55,212-2. Inhibition of pAKT led to cell cycle arrest in gastric cancer cells. Cell cycle arrest preceded apoptotic response. Thus, this cannabinoid agonist can reduce gastric cancer cell proliferation via G1 phase cell cycle arrest, which is mediated via activation of the MAPK pathway and inhibition of pAKT.  相似文献   

10.
11.
视黄酸对胃癌细胞周期的调控   总被引:3,自引:0,他引:3  
Retinoic acid can induce growth inhibition and apoptosis, and regulate cell cycle in many types of cancer cell lines. In this study, we investigated the role of all-trans retinoic acid (ATRA) and its mechanism of action in human gastric cancer cell lines. Our results demonstrated that ATRA effectively inhibited growth in three of four gastric cancer cell lines by induction of G0/G1 arrest, and did not induce apoptosis in four gastric cancer cell lines. In RA-sensitive cell lines, ATRA-induced G0/G1 arrest is associated with down regulaton of c-myc and hyperphosphorylated Rb expression, and up regulation of p21WAF1/CIP1 and p53 expression. There were no significant changes in cyclin D1 or CDK4 expression induced by ATRA. Futhermore, expression of these genes were not regulated by ATRA in ATRA-resistant gastric cancer cell line. These results indicate that growth inhibition, rather than apoptosis, is correlated with G0/G1 arrest of these cell lines, more important molecules related cell cycle, including c-myc, p21WAF1/CIP1, p53 and Rb, are involveed in regulation of cell cycle in gastric cancer cells.  相似文献   

12.
Zhang J  Ghio AJ  Gao M  Wei K  Rosen GD  Upadhyay D 《FEBS letters》2007,581(27):5315-5320
We hypothesized that the ambient air pollution particles (particulate matter; PM) induce cell cycle arrest in alveolar epithelial cells (AEC). Exposure of PM (25microg/cm(2)) to AEC induced cells cycle arrest in G1 phase, inhibited DNA synthesis, blocked cell proliferation and caused decrease in cyclin E, A, D1 and Cyclin E- cyclin-dependent kinase (CDK)-2 kinase activity after 4h. PM induced upregulation of CDK inhibitor, p21 protein and p21 activity in AEC. SiRNAp21 blocked PM-induced downregulation of cyclins and AEC G1 arrest. Accordingly, we provide the evidence that PM induces AEC G1 arrest by altered regulation of G1 cyclins and CDKs.  相似文献   

13.
Insulin-like Growth Factor-1 (IGF-1) plays a key role in breast cancer development and cell cycle regulation. It has been demonstrated that IGF-1 stimulates cyclin expression, thus regulating the G1 to S phase transition of the cell cycle. Potassium (K+) channels are involved in the G1 phase progression of the cell cycle induced by growth factors. However, mechanisms that allow growth factors to cooperate with K+ channels in order to modulate the G1 phase progression and cyclin expression remain unknown. Here, we focused on hEag1 K+ channels which are over-expressed in breast cancer and are involved in the G1 phase progression of breast cancer cells (MCF-7). As expected, IGF-1 increased cyclin D1 and E expression of MCF-7 cells in a cyclic manner, whereas the increase of CDK4 and 2 levels was sustained. IGF-1 stimulated p21WAF1/Cip1 expression with a kinetic similar to that of cyclin D1, however p27Kip1 expression was insensitive to IGF-1. Interestingly, astemizole, a blocker of hEag1 channels, but not E4031, a blocker of HERG channels, inhibited the expression of both cyclins after 6-8 h of co-stimulation with IGF-1. However, astemizole failed to modulate CDK4, CDK2, p21WAF1/Cip1 and p27Kip1 expression. The down-regulation of hEag1 by siRNA provoked a decrease in cyclin expression. This study is the first to demonstrate that K+ channels such as hEag1 are directly involved in the IGF-1-induced up-regulation of cyclin D1 and E expression in MCF-7 cells. By identifying more specifically the temporal position of the arrest site induced by the inhibition of hEag1 channels, we confirmed that hEag1 activity is predominantly upstream of the arrest site induced by serum-deprivation, prior to the up-regulation of both cyclins D1 and E.  相似文献   

14.
15.
16.
We examined concentration-dependent changes in cell cycle distribution and cell cycle-related proteins induced by butyric acid. Butyric acid enhanced or suppressed the proliferation of Jurkat human T lymphocytes depending on concentration. A low concentration of butyric acid induced a massive increase in the number of cells in S and G2/M phases, whereas a high concentration significantly increased the accumulation of cells in G2/M phase, suppressed the accumulation of cells in G0/G1 and S phases, and induced apoptosis that cell cycle-related protein expression in Jurkat cells treated with high levels of butyric acid caused a marked decrease in cyclin A, cyclin E, cyclin-dependent kinase 2 (CDK2), CDK4 and CDK6 protein levels in G0/G1 and S phases, with apoptosis induction, and a decrease in cyclin B, Cdc25c and p27KIP1 protein levels, as well as an increase in p21CIP1/WAF1 protein level, in the G2/M phase. Taken together, our results indicate that butyric acid has bimodal effects on cell proliferation and survival. The inhibition of cell growth followed by the increase in apoptosis induced by high levels of butyric acid were related to an increase in cell death in G0/G1 and S phases, as well as G2/M arrest of cells. Finally, these results were further substantiated by the expression profile of butyric acid-treated Jurkat cells obtained by means of cDNA array.  相似文献   

17.
The cyclin-dependent kinase (CDK) inhibitor p21CDKN1A is known to induce cell cycle arrest by inhibiting CDK activity and by interfering with DNA replication through binding to proliferating cell nuclear antigen. Although the molecular mechanisms have been elucidated, the temporal dynamics, as well as the intracellular sites of the activity of p21 bound to cyclin/CDK complexes during cell cycle arrest, have not been fully investigated. In this study we have induced the expression of p21CDKN1A fused to green fluorescent protein (GFP) in HeLa cells, in order to visualize the intracellular localization of the inhibitor during the cell cycle arrest. We show that p21-GFP is preferentially expressed in association with cyclin E in cells arrested in G1 phase, and with cyclin A more than with cyclin B1 in cells arrested in the G2/M compartment. In addition, we show for the first time that p21-GFP colocalizes with cyclin E in the nucleolus of HeLa cells during the G1 phase arrest.O. Cazzalini and P. Perucca contributed equally to this work  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号