首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gene 12 of equine herpesvirus 1 (EHV-1), the homolog of herpes simplex virus (HSV) VP16 (alpha TIF, Vmw65), was cloned into a eukaryotic expression vector by PCR and used in transactivation studies of both the EHV-1 and HSV-1 IE1 promoters. Results demonstrated that the product of gene 12 is a potent transactivator of immediate-early gene expression of both viruses, which requires sequences in the upstream HSV-1 promoter for activity. Mutational analysis of the gene 12 open reading frame indicated that removal of the C-terminal 7 amino acids, which contain a short region of homology with the extreme C terminus of VP16, inactivated the protein. Within this region, only a single methionine residue appeared to be essential for activity, implying that gene 12 may have a modular array of organization similar to that of VP16. However, fusion of the gene 12 C terminus to a truncated form of VP16, which contained the complex formation domain, did not restore activity to the HSV-1 protein. These data demonstrate that the EHV-1 immediate-early transactivator may not be functionally colinear with VP16, with transactivation requiring both the C terminus and another region(s) present within the N-terminal portion.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
We previously indicated that myeloid elf-1-like factor (MEF) but not elf-1, specifically activated lysozyme gene expression in epithelial cells. MEF is highly homologous at the nucleotide and amino acid level, with elf-1 especially in the ETS domain. Here, we report the functional analysis of the nuclear localization and transactivation properties of MEF. To investigate the intracellular localization of MEF, we transiently transfected MEF-green fluorescence protein (GFP) fusion protein expression vector into HeLa cells. A region spanning residues 177-291 is required for nuclear localization. We produced deletion mutants of MEF to determine the transactivation domain. The data showed that the N-terminal region, encompassing amino acids 1-52 is a potent transactivation domain. The C-terminal region spanning residues 477-663 can also mediate transactivation but not as strongly as the N-terminal region. The activity of the amino acid residues 1-52 was confirmed by experiments with fused constructs of MEF to the DNA binding-domain of the yeast GAL4 protein. These results, which determined the localization of the functional domains of MEF, will provide us with new clues to its transactivation mechanisms to regulate lysozyme gene expression in epithelial cells.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号