首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
金属硫蛋白(metallothionein, MT) 是一类富含半胱氨酸的低分子质量蛋白质,已鉴定4种亚型:MT-1、MT-2、MT-3和MT-4,基于各亚型功能的相对异质性而使MT呈现其生物学作用的多样性。金属硫蛋白通过与金属离子结合而参与基因表达调控和机体的重金属解毒过程;金属硫蛋白通过抑制多种氧化应激途径而保护细胞免受损伤;金属硫蛋白通过参与细胞的增殖、分化和凋亡的调节而影响肿瘤及其他重大疾病的发生发展。本文在金属硫蛋白的结构和分类的基础上综述其生物学作用及其相关机制。  相似文献   

2.
It has been shown in various systems that zinc is able to antagonize the catalytic properties of the redox-active transition metals iron and copper, although the process is still unclear. Probably, the protective effect of Zn against oxidative stress is mainly due to the induction of a scavenger metal binding protein such as metallothionein (MT), rather than a direct action. To support this hypothesis, in this study, the effects of Zn, Cu, Fe, Zn + Cu and Zn + Fe treatments were investigated in a fibroblast cell line corresponding to an SV40-transformed MT-1/-2 mutant (MT-/-), and in wild type (MT+/+), by valuing metal concentrations and apoptotic and/or necrotic processes. We also investigated the synthesis of MT and the levels of both MT-1 and MT-2 mRNAs. In MT+/+ cells, co-treatment with Zn + Fe caused a decrease in Fe content compared to treatment with Fe alone. After Zn and Zn + Cu exposure the expression of MT-1 and MT-2 isoforms increased with a concomitant increase in MT synthesis. Annexin V-FITC and propidium iodide staining revealed necrotic or apoptotic cells in terminal stages, especially after Fe treatments. Immunofluorescent staining with an anti-ssDNA Mab and annexin detected a lower signal in co-treated cells compared to the single treatments in both cell lines. The intensity and quantity of fluorescence resulting from anti-ssDNA and Annexin V staining of MT null cells was higher compared to wild type cells. These results suggest that Zn alone does not completely exert an anti-oxidant effect against Cu and Fe toxicity, but that induction of MT is necessary.  相似文献   

3.
MTs are small cysteine-rich metal-binding proteins found in many species and, although there are differences between them, it is of note that they have a great deal of sequence and structural homology. Mammalian MTs are 61 or 62 amino acid polypep-tides containing 20 conserved cysteine residues that underpin the binding of metals. The existence of MT across species is indicative of its biological demand, while the conservation of cysteines indicates that these are undoubtedly central to the function of this protein. Four MT isoforms have been found so far, MT-1, MT-2, MT-3, and MT-4, but these also have subtypes with 17 MT genes identified in man, of which 10 are known to be functional. Different cells express different MT isoforms with varying levels of expression perhaps as a result of the different function of each isoform. Even different metals induce and bind to MTs to different extents. Over 40 years of research into MT have yielded much information on this protein, but have failed to assign to it a definitive biological role. The fact that multiple MT isoforms exist, and the great variety of substances and agents that act as inducers, further complicates the search for the biological role of MTs. This article reviews the current knowledge on the biochemistry, induction, regulation, and degradation of this protein in mammals, with a particular emphasis on human MTs. It also considers the possible biological roles of this protein, which include participation in cell proliferation and apoptosis, homeostasis of essential metals, cellular free radical scavenging, and metal detoxification.  相似文献   

4.
MTs are small cysteine-rich metal-binding proteins found in many species and, although there are differences between them, it is of note that they have a great deal of sequence and structural homology. Mammalian MTs are 61 or 62 amino acid polypeptides containing 20 conserved cysteine residues that underpin the binding of metals. The existence of MT across species is indicative of its biological demand, while the conservation of cysteines indicates that these are undoubtedly central to the function of this protein. Four MT isoforms have been found so far, MT-1, MT-2, MT-3, and MT-4, but these also have subtypes with 17 MT genes identified in man, of which 10 are known to be functional. Different cells express different MT isoforms with varying levels of expression perhaps as a result of the different function of each isoform. Even different metals induce and bind to MTs to different extents. Over 40 years of research into MT have yielded much information on this protein, but have failed to assign to it a definitive biological role. The fact that multiple MT isoforms exist, and the great variety of substances and agents that act as inducers, further complicates the search for the biological role of MTs. This article reviews the current knowledge on the biochemistry, induction, regulation, and degradation of this protein in mammals, with a particular emphasis on human MTs. It also considers the possible biological roles of this protein, which include participation in cell proliferation and apoptosis, homeostasis of essential metals, cellular free radical scavenging, and metal detoxification.  相似文献   

5.
Human metallothioneins (MTs) are important regulators of metal homeostasis and protectors against oxidative damage. Their altered mRNA expression has been correlated with metal toxicity and a variety of cancers. Current immunodetection methods lack the specificity to distinguish all 12 human isoforms. Each, however, can be distinguished by the mass of its acetylated, cysteine-rich, hydrophilic N-terminal tryptic peptides. These properties were exploited to develop a bottom-up MALDI-TOF/TOF-MS-based method for their simultaneous quantitation. Key features included enrichment of N-terminal acetylated peptides by strong cation exchange chromatography, optimization of C18 reversed-phase chromatography, and control of methionine oxidation. Combinations of nine isoforms were identified in seven cell lines and two tissues. Relative quantitation was accomplished by comparing peak intensities of peptides generated from pooled cytosolic proteins alkylated with 14N- or 15N-iodoacetamide. Absolute quantitation was achieved using 15N-iodoacetamide-labeled synthetic peptides as internal standards. The method was applied to the cadmium induction of MTs in human kidney HK-2 epithelial cells expressing recombinant MT-3. Seven isoforms were detected with abundances spanning almost 2 orders of magnitude and inductions up to 12-fold. The protein-to-mRNA ratio for MT-1E was one-tenth that of other MTs, suggesting isoform-specific differences in protein expression efficiency. Differential expression of MT-1G1 and MT-1G2 suggested tissue- and cell-specific alternative splicing for the MT-1G isoform. Protein expression of MT isoforms was also evaluated in human breast epithelial cancer cell lines. Estrogen-receptor-positive cell lines expressed only MT-2 and MT-1X, whereas estrogen-receptor-negative cell lines additionally expressed MT-1E. The combined expression of MT isoforms was 38-fold greater in estrogen-receptor-negative cell lines than in estrogen-receptor-positive cells. These findings demonstrate that individual human MT isoforms can be accurately quantified in cells and tissues at the protein level, complementing and expanding mRNA measurement as a means for evaluating MTs as potential biomarkers for cancers or heavy metal toxicity.The metallothioneins (MTs)1 are a family of small, highly conserved proteins with the specific capacity to bind metal ions (13). Mammalian MTs, typically 61 to 68 amino acid residues in length, contain 20 invariant cysteine residues that form two distinct metal-binding domains. Up to seven or eight metal ions may be coordinated per MT. Many functions have been attributed to this redox-active protein, including zinc homeostasis; heavy metal detoxification; metal exchange; metal transfer; and protection against oxidative damage, inflammatory responses, and other cellular stresses (46). Changes in MT expression have been associated with human pathologies including cadmium-induced renal toxicity (7), neurodegeneration (8), and many forms of cancer (9, 10). The understanding of these changes is complicated by the 11 functional MT genes, seven pseudogenes, and four MT-like genes encoded in the genome, most of which contain only small differences in amino acid sequence (11). Seventeen of the 18 genes and pseudogenes are clustered together on chromosome 16, which is known to be enriched for intrachromosomal duplications (12). The various MT gene products differ in their patterns of mRNA and protein expression in human tissues and cell lines. Immunohistochemical detection using antibodies that do not discriminate between MT-1 and MT-2 isoforms indicates wide tissue and cell type distribution of MTs, as illustrated with the MT-1A entry of the Human Protein Atlas (13, 14). Measurements of individual MT mRNA levels, however, clearly demonstrate differential expression of specific MT-1 isoforms in human tissues and cell lines (1517). The MT-3 (18, 19) and MT-4 (20) mRNAs are expressed in even narrower ranges of cell types.An abundance of immunohistochemical and mRNA measurements show that alteration of MT isoform expression is correlated with a variety of cancers (9, 10). For example, several studies show that the expression of specific MT isoforms is altered in invasive ductal breast carcinomas. Elevated MT-2A (21) or MT-1F (22) is correlated with increased proliferation or tumor grade, respectively. Expression of MT-3 is associated with poor prognosis (23, 24). The MT-1E isoform is found in estrogen-receptor-negative (ER), but not estrogen-receptor-positive (ER+), tumors (25) and cell lines (26). Parallel assessment of changes in MT protein expression via immunohistochemistry supports the mRNA data up to a point. Except for antibodies specific for the MT-3 isoform (27), all commercially available MT antibodies are pan-specific for the MT-1, MT-2, and MT-4 protein isoforms (28). This is because epitopes recognized by antibodies raised against MT-1 or MT-2 are limited to the first five residues of the acetylated N terminus, which are invariant among all MT-1, MT-2, and MT-4 isoforms (2931). This includes the commercially available E9 antibody that has been used to demonstrate the overexpression of MT in a wide variety of human cancers (28, 32, 33). In general, the overexpression of MT in various cancers has been associated with resistance to anticancer therapies and linked to a poor prognosis.The mounting evidence that specific MT isoforms may be useful prognostic and diagnostic markers for cancers highlights the need for alternative approaches to the assessment of MT isoform expression at the protein level. A few mass-spectrometry-based studies have succeeded in identifying the complement of MT isoforms in human cells (34, 35). Though top-down approaches hold promise for the quantitation of MTs based on the unique masses of intact isoforms (34, 36), this has yet to be exploited. Inductively coupled plasma MS has been used to quantify total metal-bound MTs in cells and tissues, but it cannot assign relative abundance values of MT isoforms because the proteins are reduced to their elemental composition with this technique. Thus far, MALDI-MS has been used in parallel with inductively coupled plasma MS for the qualitative identification of isoforms (35). Bottom-up quantitative approaches specifically targeting MTs have not yet been reported.The use of mass spectrometry to quantify MT isoforms is not straightforward. The N-terminal tryptic peptide of each human MT isoform encompasses the only sequence that distinguishes all 12 and therefore may be used for their identification and quantitation in complex biological samples from cells and tissues (34). Any attempt at quantitation of this family of small, highly conserved, cysteine-rich proteins therefore requires reproducible detection of these signature peptides.An optimized bottom-up proteomic method is presented here that is capable of identifying and quantifying all isoforms that constitute the human MT gene family in a single experiment. The approach is comparable in sensitivity and dynamic range to quantitative PCR methods used to measure mRNA levels. Quantitative and qualitative differences between mRNA and protein expression indicate that isoform-specific measurements of protein levels complement and extend our understanding of MT isoform expression in complex biological samples. The method was applied to the characterization of MT isoforms in ER+ and ER breast cancer cell lines. Protein and mRNA measurements showed the same complement of isoform expression, confirming differential MT expression between ER+ and ER cell lines. The mass spectrometry assay further showed dramatic differences in the abundance of protein and mRNA in specific isoforms, an observation that has not been previously reported.  相似文献   

6.
A competitive enzyme-linked immunosorbent assay (ELISA) for the measurement of metallothionein (MT) in tissues and body fluids has been developed. The ELISA employs the IgG fraction of a rabbit antiserum to rat liver Cd-MT-2 polymer, a biotinylated secondary antibody, and peroxidase conjugated avidin. With a 1:4000 dilution of the immunoglobulins, typical standard curves (logit-log regression) provide a linear range of 0.1–100 ng for MT-2 and 10–1000 ng for MT-1. Fifty percent inhibition is accomplished with 15 ng and 250 ng for MT-2 and MT-1, respectively. Rat liver MT-1 and MT-2 containing different metals (Ag, Cu, and Zn) inhibited the antibodies as effectively as CdMT. However, the antibodies exhibited greater affinity for both Apo-MT isoforms. Previously reported discrepancies between results obtained by metal binding assays (e.g., Ag-hem binding) and radioimmunoassay for MT levels in tissues have been largely resolved. By addition of 1% Tween 20 to samples, the ELISA routinely estimated the total MT in samples of rat, mouse, and human liver and kidney at 88% of the value obtained by the silver-hem binding assay. Specific antibodies to MT-2 were purified from our anti-serum by affinity purification using CH-Sepharose 4B coupled with rat liver MT-1. Estimation of MT in samples using purified MT-2 antibodies provided slightly lower values (72%) for MT in tissues as compared to the Ag-hem method. The predominant form of MT in tissues of control animals was found to be MT-2. Therefore, the MT-2 specific antibodies may be useful for the study of the functions of MT isoforms. Levels of total MT in tissues and biological fluids of rats injected with CdCl2 (0.3 mg Cd/kg) and Cd-MT (0.3 mg Cd/kg) were estimated by ELISA. The results suggest urinary MT levels may be related to kidney damage.  相似文献   

7.
8.
9.
Metallothionein isoform expression by breast cancer cells   总被引:3,自引:0,他引:3  
Expression of metallothionein (MT) isoforms by a human breast cancer cell line, PMC42, which retains many characteristics of normal breast epithelial cells and expresses functional estrogen receptors, was examined because it has been proposed that human breast cancer cells which are estrogen receptor positive can be differentiated from those which are estrogen receptor negative, by failure to express MT-1E [J.A. Friedline, S.H. Garrett, S. Somji, J.H. Todd, D. A. Sens, Differential expression of the MT-1E gene in estrogen-receptor positive and -negative breast cancer cell lines, Am. J. Pathol. 152 (1998) 23-27]. Using RT-PCR, PMC42 cells were found to transcribe genes for the MT isoforms IE, IX and 2A but not 1A or 1H. In order to examine which of the expressed isoforms might protect against metal toxicity, the cells were challenged with high concentrations of zinc and copper. Using competitive RT-PCR, cells resistant to 500 microM zinc showed 7+/-2 fold (SD, n=3) increases in expression of MT-1X and 6+/-3 fold increases in expression of MT-2A compared to control cells in normal media. For cells resistant to 250 microM copper the corresponding increases were 37+/-13 and 60+/-20 fold, whilst for control cells treated with 250 microM copper for only 6 h, increases were 10+/-3 and 6+/-3 fold. There was only a low level of expression of MT-1E in untreated cells and but a >120 fold increase in copper- resistant cells. Thus estrogen receptor positive cells cannot, in general, be differentiated from estrogen receptor negative cells by failure to express MT-1E, as suggested by Friedline et al. (1998). Increased expression of MT-1E, as well as MT-1X and MT-2A, protects against metal toxicity in PMC42 breast cancer cells.  相似文献   

10.
Toxicological aspects of metallothionein.   总被引:21,自引:0,他引:21  
Metallothionein (MT) is expressed to a certain extent in almost all mammalian tissues. The biological significance of MT is related to its various forms MT-1, MT-2, MT-3 and MT4. For MT-1 several isoforms of the protein exist and it is likely that these isoforms are related to various functions involved in developmental processes occurring at various stages of gestation. Toxicokinetics and biochemistry of essential and toxic metals such as cadmium, zinc, mercury and copper in organs e.g. kidney, CNS, are often related to metallothionein. It is debated whether there is a relation or not for other metals e.g. selenium and bismuth. For the toxicokinetics of cadmium, MT plays an important role. By expanding techniques from experimental toxicology and biochemistry to include molecular biology methods, more specific and relevant studies can be performed of the actual role and biological function of MT. The present paper on toxicological aspects of metallothionein, presents an overview and evaluation of present knowledge concerning differences among organs and within organs of the expression of MT and how this affects tissue sensitivity to toxicity.  相似文献   

11.
Significance of metallothionein expression in breast myoepithelial cells   总被引:6,自引:0,他引:6  
  相似文献   

12.
Chemistry and biology of mammalian metallothioneins   总被引:1,自引:0,他引:1  
Metallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators. In contrast, MT-3 and MT-4 are noninducible proteins, with their expression primarily confined to the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have been reported to be secreted, suggesting that they may play different biological roles in the intracellular and extracellular space. Recent reports established that these isoforms play an important protective role in brain injury and metal-linked neurodegenerative diseases. In the postgenomic era, it is becoming increasingly clear that MTs fulfill multiple functions, including the involvement in zinc and copper homeostasis, protection against heavy metal toxicity, and oxidative damage. All mammalian MTs are monomeric proteins, containing two metal–thiolate clusters. In this review, after a brief summary of the historical milestones of the MT-1/MT-2 research, the recent advances in the structure, chemistry, and biological function of MT-3 and MT-4 are discussed.  相似文献   

13.
The aim of this study was to identify metallothionein (MT) isoforms in mouse liver by using capillary zone electrophoresis (CZE). Purified MT-1 and MT-2 isoforms were completely separated by CZE using a polyacrylamide-coated tube at physiologic pH. There were two peaks in the cytosol fraction prepared from zinc-injected mouse liver, in which the migration times corresponded with those of purified MT-1 and MT-2 isoforms. When anti-MT monoclonal antibody was added with the purified MT-1 or MT-2 solution, the peaks decreased. Furthermore, the two peaks in the cytosol prepared from Zn-injected mouse liver decreased in a time-dependent manner from the electropherogram after the addition of the antibody. Therefore, those peaks were identified as MT-1 and MT-2 isoforms, respectively. In conclusion, the addition of anti-MT monoclonal antibody to the cytosol fraction of tissues is an effective method for identification of MT isoforms after separation using CZE.  相似文献   

14.
Oz G  Zangger K  Armitage IM 《Biochemistry》2001,40(38):11433-11441
The brain specific member of the metallothionein (MT) family of proteins, metallothionein-3, inhibits the growth and survival of neurons, in contrast to the ubiquitous mammalian MT isoforms, MT-1 and MT-2, that are found in most tissues and are thought to function in metal ion homeostasis and detoxification. Solution NMR was utilized to determine the structural and dynamic differences of MT-3 from MT-1 and 2. The high-resolution solution structure of the C-terminal alpha-domain of recombinant mouse MT-3 revealed a tertiary fold very similar to MT-1 and 2, except for a loop that accommodates an acidic insertion relative to these isoforms. This loop was distinguished from the rest of the domain by dynamics of the backbone on the nano- to picosecond time-scale shown by (15)N relaxation studies and was identified as a possible interaction site with other proteins. The N-terminal beta-domain contains the region responsible for the growth inhibitory activity, a CPCP tetrapeptide close to the N-terminus. Because of exchange broadening of a large number of the NMR signals from this domain, homology modeling was utilized to calculate models for the beta-domain and suggested that while the backbone fold of the MT-3 beta-domain is identical to MT-1 and 2, the second proline responsible for the activity, Pro9, may show structural heterogeneity. (15)N relaxation analyses implied fast internal motions for the beta-domain. On the basis of these observations, we conclude that the growth inhibitory activity exhibited by MT-3 is a result of a combination of local structural differences and global dynamics in the beta-domain.  相似文献   

15.
Metallothioneins (MTs) have been detected in livers and kidneys of 10 marine mammals species (Pinnipeds and Odontocetes). Characterization of renal MTs of striped dolphin has shown that the protein has two isoforms (MT-1 and MT-2) with a molecular weight estimated around 6,800. MT concentrations also vary widely in marine mammals tissues (from 58 to 1,200 microg x g(-1) ww) underlying the numerous parameters involved: physiological status, pregnancy, age, diet. The participation of this protein in metal detoxification has been investigated since high levels of cadmium (Cd) and mercury (Hg) have been measured in livers and kidneys of marine mammals. It has been suggested that those animals can mitigate at least in part, the toxic effects of Cd and Hg through binding to MTs. The percentage of the cytosolic Cd bound to MTs can reach almost 100%. On the contrary, the percentage of hepatic and renal Hg bound to MT is very low (generally less than 10%) and this metal is mainly associated with selenium (HgSe) under a detoxified form in the insoluble fraction of the tissues. MTs appear to play a minor role in the binding and detoxification of Hg by marine mammals. On the contrary, close and dynamic interactions occur between Cd and MTs. Cytosolic MTs appear as a potential short term way of detoxification of Cd accumulated from diet. Long-term detoxification would imply a sequestration of the metal under a precipitated form (e.g. in lysosomes).  相似文献   

16.
We have investigated free-solution capillary electrophoresis (FSCE) and micellar electrokinetic capillary chromatography (MECC) separations of metallothionein (MT) isoforms conducted in uncoated and surface-modified fused-silica capillaries. At alkaline pH, FSCE rapidly resolves isoforms belonging to the MT-1 and MT-2 charge classes. At acidic pH, additional resolution of MT isoforms is achieved. The use of high-ionic-strength (0.5 M) phosphate buffers can result in high peak efficiencies and increased resolution for some MT isoforms. Interior capillary surface coatings such as polyamine and linear polyacrylamide polymers permit separation of MT isoforms with enhanced resolution through their effects on electroosmotic flow (EOF) and protein-wall interactions. Improvements in MT isoform resolution can also be achieved by MECC using 100 mM borate buffer pH 8.4 containing 75 mM SDS. Deproteinization of tissue cytosol samples with acetonitrile (60–80%) or perchloric acid (7%) produces extracts that can be subjected to direct analysis of MT by FSCE or MECC. We conclude that optimal separation of MT isoforms by capillary electrophoresis (CE) can be achieved with the appropriate combination of different capillaries, buffers and sample preparation techniques.  相似文献   

17.
Metallothionein (MT) isoforms, MT-1 and MT-2, in biological specimens are clearly separated by capillary zone electrophoresis (CZE) using a polyacrylamide-coated capillary. The effectiveness of CZE analysis in the study of MT isoforms in biological specimens is discussed. We did two experiments to determine the MT-1/MT-2 ratio in biological specimens. The ratio of MT-1/MT-2 can be determined by CZE under a neutral pH without any detergents. One of these studies is time-dependent changes of the MT-1/MT-2 ratio in the cytosol of the pancreas and liver in mice after Zn or Cd injection. In the pancreas, both isoforms were detected in the control mice and the ratio of MT-1/MT-2 was below 1.0. When Zn was injected, the maximum peak areas of both isoforms were obtained at 24 h, and the ratios increased over a value of 1.0 at 3 h and peaked at 10 h. However, in the Cd-injected mice, the peak areas of both isoforms increased up to 72 h, and the ratios were below 1.0 up to 72 h. On the contrary, neither isoform was detected in the livers of control mice. The ratios of Zn-injected mice liver were near the value 1.0 between 6 and 72 h, although the areas of both isoforms showed peaks at 48 h. The ratios of Cd-injected mice livers were detected to be over 1.0 from 10 h, but there were no significant difference between 10 and 72 h, and the areas of both isoforms showed peaks at 24 h. The other experiment investigated the ratio in each fraction of cell fractionation. Cell fractionation was done in the livers of Zn-treated mice. Twenty-four hours after the injection, the ratio of MT-1/MT-2 was 0.80+/-0.12 and 1.19+/-0.21 (mean+/-SD) in nuclear and cytosol fractions, respectively. Neither isoform was detected in mitochondrial or microsomal fraction. From the present results, CZE analysis is a suitable method for observation of the ratio of MT-1/MT-2 in biological specimens, and dynamic changes in both isoforms can be detected.  相似文献   

18.
Two metallothionein cDNA isoforms (MT-1 and MT-2) were isolated from carp (Cyprinus carpio) by RT-PCR. Sequence analysis of the cDNAs revealed two amino acid differences between the coding regions and markedly different 3'-untranslated ends. Gene-specific primers were selected and used in RT-PCR reactions to measure the basal MT-1 and MT-2 mRNA levels and to follow the inducer-specific expression of MT genes in different tissues during in vivo studies. In the brain and muscle, the uninduced levels of the two MT mRNAs were similar. In the kidney and liver, the MT-1 gene product predominated, while in the heart the relative expression levels of the two genes were opposite. Both the MT-1 and MT-2 mRNA levels increased with Cd concentration in a time- and dose-dependent manner. The expression of MT-2, however, was more responsive to a high Cd concentration. In parallel with the induction of the MTs by Cd, we followed the accumulation of this metal in the kidney and liver. Although the Cd level was always higher in the kidney during treatment, the rate of accumulation was higher in the liver. Cold stress resulted in a significantly higher induction of MT-1 than of MT-2, while heat shock had no effect on the expression of either gene.  相似文献   

19.
Regulatory role of metallothionein in NF-kappaB activation.   总被引:5,自引:0,他引:5  
A Sakurai  S Hara  N Okano  Y Kondo  J Inoue  N Imura 《FEBS letters》1999,455(1-2):55-58
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号