首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1995,130(5):1071-1079
In adipose and muscle cells, insulin stimulates a rapid and dramatic increase in glucose uptake, primarily by promoting the redistribution of the GLUT4 glucose transporter from its intracellular storage site to the plasma membrane. In contrast, the more ubiquitously expressed isoform GLUT1 is localized at the cell surface in the basal state, and shows a less dramatic translocation in response to insulin. To identify sequences involved in the differential subcellular localization and hormone-responsiveness of these isoforms, chimeric GLUT1/GLUT4 transporters were stably expressed in mouse 3T3-L1 adipocytes. The NH2 terminus of GLUT4 contains sequences capable of sequestering the transporter inside the cell, although not in an insulin-sensitive pool. In contrast, the COOH-terminal 30 amino acids of GLUT4 are sufficient for its correct localization to an intracellular storage pool which translocates to the cell surface in response to insulin. The dileucine motif within this domain, which is required for intracellular sequestration of chimeric transporters in fibroblasts, is not critical for targeting to the hormone-responsive compartment in adipocytes. Analysis of rates of internalization of chimeric transporter after the removal of insulin from cells, as well as the subcellular distribution of transporters in cells unexposed to or treated with insulin, leads to a three-pool model which can account for the data.  相似文献   

2.
The insulin-regulated adipocyte/skeletal muscle glucose transporter (GLUT4) displays a characteristic steady-state intracellular localization under basal conditions, whereas the erythrocyte/brain transporter isoform (GLUT1) distributes mostly to the cell surface. To identify possible structural elements in these transporter proteins that determine their cellular localization, GLUT1/GLUT4 chimera cDNA constructs that contain the hemagglutinin epitope YPYDVPDYA (HA) in their major exofacial loops were engineered. Binding of monoclonal anti- HA antibody to non-permeabilized COS-7 cells expressing HA-tagged transporter chimeras revealed that expression of transporters on the cell surface was strongly influenced by their cytoplasmic COOH-terminal domain. This method also revealed a less marked, but significant effect on cellular localization of amino acid residues between transporter exofacial and middle loops. The subcellular distribution of expressed chimeras was confirmed by immunofluorescence microscopy of permeabilized COS-7 cells. Thus, HA-tagged native GLUT4 was concentrated in the perinuclear region, whereas a chimera containing the COOH-terminal 29 residues of GLUT1 substituted onto GLUT4 distributed to the plasma membrane, as did native GLUT1. Furthermore, a chimera composed of GLUT1 with a GLUT4 COOH-terminal 30-residue substitution exhibited a predominantly intracellular localization. Similar data was obtained in CHO cells stably expressing these chimeras. Taken together, these results define the unique COOH-terminal cytoplasmic sequences of the GLUT1 and GLUT4 glucose transporters as important determinants of cellular localization in COS-7 and CHO cells.  相似文献   

3.
Facilitative glucose transporter isoforms, GLUT1 and GLUT4, have different intracellular distributions despite their very similar structure. In insulin-responsive tissues such as adipose tissues and muscle, GLUT4 protein resides mainly in the intracellular region in a basal condition and is translocated to the plasma membrane upon stimulation of insulin. In contrast, GLUT1 protein was distributed about equally between plasma membranes and low density microsomal membranes in 3T3-L1 adipocytes. Furthermore, GLUT1 and GLUT4 were reported to be differentially targeted to the plasma membrane and intracellular region, respectively, when expressed in Chinese hamster ovary cells and HepG2 cells. To elucidate the differential intracellular targeting mechanisms, several chimeric glucose transporters in which portions of GLUT4 are replaced with corresponding portions of GLUT1 have been stably expressed in Chinese hamster ovary cells. Immunofluorescence and immunoelectron microscopy as well as measurement of glucose transport activity revealed that two domains of GLUT4, which are not the NH2- or COOH-terminal domain, determine its targeting to the intracellular vesicles. The first domain contains the consensus sequence of the leucine zipper structure, suggesting that a dimer-forming structure of the glucose transporter might be required for its proper targeting. The other domain contains 28 amino acids, nine of which are different between GLUT1 and GLUT4. Immunoelectron microscopy revealed that the chimeric transporters containing both of these two domains of GLUT1, only the first domain of GLUT1, and none of the domains, exhibited a different cellular distribution with approximately 65, 30, and 15% of the transporters apparently on the plasma membrane, respectively. The addition of insulin did not alter the apparent cellular distributions of these chimeric transporters. These domains would be specifically recognized by intracellular targeting mechanisms in Chinese hamster ovary cells.  相似文献   

4.
The unique COOH-terminal 30-amino acid region of the adipocyte/skeletal muscle glucose transporter (GLUT4) appears to be a major structural determinant of this protein's perinuclear localization, from where it is redistributed to the cell surface in response to insulin. To test whether an underlying mechanism of this domain's function involves glucose transporter endocytosis rates, transfected cells were generated expressing exofacial hemagglutinin epitope (HA)-tagged erythrocyte/brain glucose transporter (GLUT1) or a chimera containing the COOH-terminal 30 amino acids of GLUT4 substituted onto this GLUT1 construct. Incubation of COS-7 or CHO cells expressing the HA-tagged chimera with anti-HA antibody at 37 degrees resulted in an increased rate of antibody internalization compared to cells expressing similar levels of HA-tagged GLUT1, which displays a cell surface disposition. Colocalization of the internalized anti-HA antibody in vesicular structures with internalized transferrin and with total transporters was established by digital imaging microscopy, suggesting the total cellular pool of transporters are continuously recycling through the coated pit endocytosis pathway. Mutation of the unique double leucines 489 and 490 in the rat GLUT4 COOH-terminal domain to alanines caused the HA-tagged chimera to revert to the slow endocytosis rate and steady- state cell surface display characteristic of GLUT1. These results support the hypothesis that the double leucine motif in the GLUT4 COOH terminus operates as a rapid endocytosis and retention signal in the GLUT4 transporter, causing its localization to intracellular compartments in the absence of insulin.  相似文献   

5.
Insulin stimulates glucose transport in adipocytes via the rapid redistribution of the GLUT1 and GLUT4 glucose transporters from intracellular membrane compartments to the cell surface. Insulin sensitivity is dependent on the proper intracellular trafficking of the glucose transporters in the basal state. The bulk of insulin-sensitive transport in adipocytes appears to be due to the translocation of GLUT4, which is more efficiently sequestered inside the cell and is present in much greater abundance than GLUT1. The cell type and isoform specificity of GLUT4 intracellular targeting were investigated by examining the subcellular distribution of GLUT1 and GLUT4 in cell types that are refractory to the effect of insulin on glucose transport. Rat GLUT4 was expressed in 3T3-L1 fibroblasts and HepG2 hepatoma cells by DNA-mediated transfection. Transfected 3T3-L1 fibroblasts over-expressing human GLUT1 exhibited increased glucose transport, and laser confocal immunofluorescent imaging of GLUT1 in these cells indicated that the protein was concentrated in the plasma membrane. In contrast, 3T3-L1 fibroblasts expressing GLUT4 exhibited no increase in transport activity, and confocal imaging demonstrated that this protein was targeted almost exclusively to cytoplasmic compartments. 3T3-L1 fibroblasts expressing GLUT4 were unresponsive to insulin with respect to transport activity, and no change was observed in the subcellular distribution of the protein after insulin administration. Immunogold labeling of frozen ultrathin sections revealed that GLUT4 was concentrated in tubulo-vesicular elements of the trans-Golgi reticulum in these cells. Sucrose density gradient analysis of 3T3-L1 homogenates was consistent with the presence of GLUT1 and GLUT4 in discrete cytoplasmic compartments. Immunogold labeling of frozen thin sections of HepG2 cells indicated that endogenous GLUT1 was heavily concentrated in the plasma membrane. Sucrose density gradient analysis of homogenates of HepG2 cells expressing rat GLUT4 suggested that GLUT4 is targeted to an intracellular location in these cells. The density of the putative GLUT4-containing cytoplasmic membrane vesicles was very similar in HepG2 cells, 3T3-L1 fibroblasts, 3T3-L1 adipocytes, and rat adipocytes. These data indicate that the intracellular trafficking of GLUT4 is isoform specific. Additionally, these observations support the notion that GLUT4 is targeted to its proper intracellular locale even in cell types that do not exhibit insulin-responsive glucose transport, and suggest that the machinery that regulates the intracellular targeting of GLUT4 is distinct from the factors that regulate insulin-dependent recruitment to the cell surface.  相似文献   

6.
We previously demonstrated that distinct facilitative glucose transporter isoforms display differential sorting in polarized epithelial cells. In Madin-Darby canine kidney (MDCK) cells, glucose transporter 1 and 2 (GLUT1 and GLUT2) are localized to the basolateral cell surface whereas GLUTs 3 and 5 are targeted to the apical membrane. To explore the molecular mechanisms underlying this asymmetric distribution, we analyzed the targeting of chimeric glucose transporter proteins in MDCK cells. Replacement of the carboxy-terminal cytosolic tail of GLUT1, GLUT2, or GLUT4 with that from GLUT3 resulted in apical targeting. Conversely, a GLUT3 chimera containing the cytosolic carboxy terminus of GLUT2 was sorted to the basolateral membrane. These findings are not attributable to the presence of a basolateral signal in the tails of GLUTs 1, 2, and 4 because the basolateral targeting of GLUT1 was retained in a GLUT1 chimera containing the carboxy terminus of GLUT5. In addition, we were unable to demonstrate the presence of an autonomous basolateral sorting signal in the GLUT1 tail using the low-density lipoprotein receptor as a reporter. By examining the targeting of a series of more defined GLUT1/3 chimeras, we found evidence of an apical targeting signal involving residues 473-484 (DRSGKDGVMEMN) in the carboxy tail. We conclude that the targeting of GLUT3 to the apical cell surface in MDCK cells is regulated by a unique cytosolic sorting motif.  相似文献   

7.
In isolated rat adipose cells, physiologically relevant insulin target cells, glucose transporter 4 (GLUT4) subcellular trafficking can be assessed by transfection of exofacially HA-tagged GLUT4. To simultaneously visualize the transfected GLUT4, we fused GFP with HA-GLUT4. With the resulting chimeras, GFP-HA-GLUT4 and HA-GLUT4-GFP, we were able to visualize for the first time the cell-surface localization, total expression, and intracellular distribution of GLUT4 in a single cell. Confocal microscopy reveals that the intracellular proportions of both GFP-HA-GLUT4 and HA-GLUT4-GFP are properly targeted to the insulin-responsive aminopeptidase-positive vesicles. Dynamic studies demonstrate close similarities in the trafficking kinetics between the two constructs and with native GLUT4. However, while the basal subcellular distribution of HA-GLUT4-GFP and the response to insulin are indistinguishable from those of HA-GLUT4 and endogenous GLUT4, most of the GFP-HA-GLUT4 is targeted to the plasma membrane with little further insulin response. Thus, HA-GLUT4-GFP will be useful to study GLUT4 trafficking in vivo while GFP on the N-terminus interferes with intracellular retention.  相似文献   

8.
Glucose transporter isoform 4 (GLUT4), is the sole glucose transporter responsible for the effect of insulin on postprandial blood glucose clearance. However, the nature of the insulin sensitivity of GLUT4 remains unknown. In this study, we replaced the first luminal loop of cellugyrin, a 4-transmembrane protein that does not respond to insulin, with that of GLUT4. The chimera protein is targeted to the intracellular insulin-responsive vesicles and is translocated to the plasma membrane upon insulin stimulation. The faithful targeting of the chimera depends on the expression of the sorting receptor sortilin, which interacts with the unique amino acid residues in the first luminal loop of GLUT4. Thus the first luminal loop may confer insulin responsiveness to the GLUT4 molecule.  相似文献   

9.
The effect of vanadium treatment on insulin-stimulated glucose transporter type 4 (GLUT4) translocation was studied in cardiac tissue of streptozotocin (STZ)-induced diabetic rats by determining the subcellular distribution of GLUT4. Four groups of rats were examined: control and diabetic, with or without bis(maltolato)oxovanadium(IV) (BMOV, an organic form of vanadium) treatment for 8 weeks. The effect of vanadium on insulin-induced GLUT4 translocation was studied at 5 min as the early insulin response and at 15 min after insulin injection as the maximal insulin response.At 5 min after insulin injection, plasma membrane GLUT4 level in the diabetic-treated group was not different from the control groups and was significantly higher than that of the insulin-stimulated diabetic group, indicating an enhancement of insulin response on GLUT4 translocation brought about by vanadium treatment. In contrast to that at 5 min after insulin injection, no significant difference in the plasma membrane GLUT4 level was observed between the diabetic and the diabetic-treated groups at 15 min after insulin injection. GLUT4 mobilization from the intracellular pool in response to insulin was also investigated at 15 min after insulin injection. Basal intracellular GLUT4 content was significantly higher in the diabetic-treated group when compared to the diabetic group under the same condition. However, the increased basal intracellular GLUT4 in the diabetic-treated group did not result in more insulin-mediated GLUT4 translocation at 15 min after insulin injection. In conclusion, the finding that plasma membrane GLUT4 in the diabetic-treated group is significantly higher than that of the diabetic group at 5 min but not at 15 min post-insulin injection indicates that vanadium treatment enhances insulin-mediated GLUT4 translocation in cardiac tissue by enhancing its early response.  相似文献   

10.
Newly synthesized glucose transporter 4 (GLUT4) enters into the insulin-responsive storage compartment in a process that is Golgi-localized gamma-ear-containing Arf-binding protein (GGA) dependent, whereas insulin-stimulated translocation is regulated by Akt substrate of 160 kDa (AS160). In the present study, using a variety of GLUT4/GLUT1 chimeras, we have analyzed the specific motifs of GLUT4 that are important for GGA and AS160 regulation of GLUT4 trafficking. Substitution of the amino terminus and the large intracellular loop of GLUT4 into GLUT1 (chimera 1-441) fully recapitulated the basal state retention, insulin-stimulated translocation, and GGA and AS160 sensitivity of wild-type GLUT4 (GLUT4-WT). GLUT4 point mutation (GLUT4-F5A) resulted in loss of GLUT4 intracellular retention in the basal state when coexpressed with both wild-type GGA and AS160. Nevertheless, similar to GLUT4-WT, the insulin-stimulated plasma membrane localization of GLUT4-F5A was significantly inhibited by coexpression of dominant-interfering GGA. In addition, coexpression with a dominant-interfering AS160 (AS160-4P) abolished insulin-stimulated GLUT4-WT but not GLUT4-F5A translocation. GLUT4 endocytosis and intracellular sequestration also required both the amino terminus and large cytoplasmic loop of GLUT4. Furthermore, both the FQQI and the SLL motifs participate in the initial endocytosis from the plasma membrane; however, once internalized, unlike the FQQI motif, the SLL motif is not responsible for intracellular recycling of GLUT4 back to the specialized compartment. Together, we have demonstrated that the FQQI motif within the amino terminus of GLUT4 is essential for GLUT4 endocytosis and AS160-dependent intracellular retention but not for the GGA-dependent sorting of GLUT4 into the insulin-responsive storage compartment.  相似文献   

11.
In adipose cells, insulin induces the translocation of GLUT4 by stimulating their exocytosis from a basal intracellular compartment to the plasma membrane. Increasing overexpression of a hemagglutinin (HA) epitope-tagged GLUT4 in rat adipose cells results in a roughly proportional increase in cell surface HA-GLUT4 levels in the basal state, accompanied by a marked reduction of the fold HA-GLUT4 translocation in response to insulin. Using biochemical methods and cotransfection experiments with differently epitope-tagged GLUT4, we show that overexpression of GLUT4 does not affect the intracellular sequestration of GLUT4 in the absence of insulin, but rather reduces the relative insulin-stimulated GLUT4 translocation to the plasma membrane. In contrast, overexpression of GLUT1 does not interfere with the targeting of GLUT4 and vice versa. These results suggest that the mechanism involved in the intracellular sequestration of GLUT4 has a high capacity whereas the mechanism for GLUT4 translocation is readily saturated by overexpression of GLUT4, implicating an active translocation machinery in the exocytosis of GLUT4.  相似文献   

12.
BACKGROUND: Adipose and muscle tissues express an insulin-sensitive glucose transporter (GLUT4). This transporter has been shown to translocate from intracellular stores to the plasma membrane following insulin stimulation. The molecular mechanisms signalling this event and the details of the translocation pathway remain unknown. In type II diabetes, the cellular transport of glucose in response to insulin is impaired, partly explaining why blood-glucose levels in patients are not lowered by insulin as in normal individuals. MATERIALS AND METHODS: Isolated rat epididymal adipocytes were stimulated with insulin and subjected to subcellular fractionation and to measurement of glucose uptake. A caveolae-rich fraction was isolated from the plasma membranes after detergent solubilization and ultracentrifugal floatation in a sucrose gradient. Presence of GLUT4 and caveolin was determined by immunoblotting after SDS-PAGE. RESULTS: In freshly isolated adipocytes, insulin induced a rapid translocation of GLUT4 to the plasma membrane fraction, which was followed by a slower transition of the transporter into a detergent resistant caveolae-rich region of the plasma membrane. The insulin-stimulated appearance of transporters in the caveolae-rich fraction occurred in parallel with enhanced glucose uptake by cells. Treatment with isoproterenol plus adenosine deaminase rapidly inhibited insulin-stimulated glucose transport by 40%, and at the same time GLUT4 disappeared from the caveolae-rich fraction and from plasma membranes as a whole. CONCLUSIONS: Insulin stimulates glucose uptake in adipocytes by rapidly translocating GLUT4 from intracellular stores to the plasma membrane. This is followed by a slower transition of GLUT4 to the caveolae-rich regions of the plasma membrane, where glucose transport appears to take place. These results have implications for an understanding of the defect in glucose transport involved in type II diabetes.  相似文献   

13.
The effects of insulin stimulation and muscle contractions on the subcellular distribution of GLUT4 in skeletal muscle have been studied on a preparation of single whole fibers from the rat soleus. The fibers were labeled for GLUT4 by a preembedding technique and observed as whole mounts by immunofluorescence microscopy, or after sectioning, by immunogold electron microscopy. The advantage of this preparation for cells of the size of muscle fibers is that it provides global views of the staining from one end of a fiber to the other and from one side to the other through the core of the fiber. In addition, the labeling efficiency is much higher than can be obtained with ultracryosections. In nonstimulated fibers, GLUT4 is excluded from the plasma membrane and T tubules. It is distributed throughout the muscle fibers with ~23% associated with large structures including multivesicular endosomes located in the TGN region, and 77% with small tubulovesicular structures. The two stimuli cause translocation of GLUT4 to both plasma membrane and T tubules. Quantitation of the immunogold electron microscopy shows that the effects of insulin and contraction are additive and that each stimulus recruits GLUT4 from both large and small depots. Immunofluorescence double labeling for GLUT4 and transferrin receptor (TfR) shows that the small depots can be further subdivided into TfR-positive and TfR-negative elements. Interestingly, we observe that colocalization of TfR and GLUT4 is increased by insulin and decreased by contractions. These results, supported by subcellular fractionation experiments, suggest that TfR-positive depots are only recruited by contractions. We do not find evidence for stimulation-induced unmasking of resident surface membrane GLUT4 transporters or for dilation of the T tubule system (Wang, W., P.A. Hansen, B.A. Marshall, J.O. Holloszy, and M. Mueckler. 1996. J. Cell Biol. 135:415–430).  相似文献   

14.
We have recently reported that following initial biosynthesis, the GLUT4 protein exits the Golgi apparatus and directly enters the insulin-responsive compartment(s) without transiting the plasma membrane. To investigate the structural motifs involved in these initial sorting events, we have generated a variety of loss-of-function and gain-of-function GLUT4/GLUT1 chimera proteins. Substitution of the GLUT4 carboxyl-terminal domain with GLUT1 had no significant effect on the acquisition of insulin responsiveness. In contrast, substitution of either the GLUT4 amino-terminal domain or the large cytoplasmic loop between transmembrane domains 6 and 7 resulted in the rapid default of GLUT4 to the plasma membrane with blunted insulin response. Consistent with these findings, substitution of the amino-terminal, cytoplasmic loop, or carboxyl-terminal domains individually into GLUT1 backbone did not recapitulate normal GLUT4 trafficking. Similarly, dual substitutions of the GLUT1 amino and carboxyl termini with GLUT4 domains or the combination of the cytoplasmic loop plus the carboxyl terminus failed to display normal GLUT4 trafficking. However, the dual replacement of the amino terminus plus the cytoplasmic loop of GLUT4 in the GLUT1 backbone resulted in a complete restoration of normal GLUT4 trafficking. Alanine-scanning mutagenesis of the GLUT4 amino terminus demonstrated that Phe(5) and Ile(8) within the FQQI motif and, to a lesser extent, Asp(12)/Gly(13) were necessary for the appropriate initial trafficking following biosynthesis. In addition, amino acids 229-271 in the large intracellular loop between transmembrane domains 6 and 7 functionally cooperated with the amino-terminal domain. These data demonstrate that initial trafficking of GLUT4 from the Golgi to the insulin-responsive GLUT4 compartment requires the functional interaction of two distinct domains.  相似文献   

15.
Rab-GTPases are important molecular switches regulating intracellular vesicle traffic, and we recently showed that Rab8A and Rab13 are activated by insulin in muscle to mobilize GLUT4-containing vesicles to the muscle cell surface. Here we show that the unconventional motor protein myosin Va (MyoVa) is an effector of Rab8A in this process. In CHO-IR cell lysates, a glutathione S-transferase chimera of the cargo-binding COOH tail (CT) of MyoVa binds Rab8A and the related Rab10, but not Rab13. Binding to Rab8A is stimulated by insulin in a phosphatidylinositol 3-kinase–dependent manner, whereas Rab10 binding is insulin insensitive. MyoVa-CT preferentially binds GTP-locked Rab8A. Full-length green fluorescent protein (GFP)–MyoVa colocalizes with mCherry-Rab8A in perinuclear small puncta, whereas GFP–MyoVa-CT collapses the GTPase into enlarged perinuclear depots. Further, GFP–MyoVa-CT blocks insulin-stimulated translocation of exofacially myc-tagged GLUT4 to the surface of muscle cells. Mutation of amino acids in MyoVa-CT predicted to bind Rab8A abrogates both interaction with Rab8A (not Rab10) and inhibition of insulin-stimulated GLUT4myc translocation. Of importance, small interfering RNA–mediated MyoVa silencing reduces insulin-stimulated GLUT4myc translocation. Rab8A colocalizes with GLUT4 in perinuclear but not submembrane regions visualized by confocal total internal reflection fluorescence microscopy. Hence insulin signaling to the molecular switch Rab8A connects with the motor protein MyoVa to mobilize GLUT4 vesicles toward the muscle cell plasma membrane.  相似文献   

16.
The GTPase ADP-ribosylation factor related protein 1 (ARFRP1) controls the recruitment of proteins such as golgin-245 to the trans-Golgi. ARFRP1 is highly expressed in adipose tissues in which the insulin-sensitive glucose transporter GLUT4 is processed through the Golgi to a specialized endosomal compartment, the insulin-responsive storage compartment from which it is translocated to the plasma membrane in response to a stimulation of cells by insulin. In order to examine the role of ARFRP1 for GLUT4 targeting, subcellular distribution of GLUT4 was investigated in adipose tissue specific Arfrp1 knockout (Arfrp1ad−/−) mice. Immunohistochemical and ultrastructural studies of brown adipocytes demonstrated an abnormal trans-Golgi in Arfrp1ad−/− adipocytes. In addition, in Arfrp1ad−/− adipocytes GLUT4 protein accumulated at the plasma membrane rather than being sequestered in an intracellular compartment. A similar missorting of GLUT4 was produced by siRNA-mediated knockdown of Arfrp1 in 3T3-L1 adipocytes which was associated with significantly elevated uptake of deoxyglucose under basal conditions. Thus, Arfrp1 appears to be involved in sorting of GLUT4.  相似文献   

17.
Insulin stimulates glucose uptake into adipocytes by mobilizing intracellular membrane vesicles containing GLUT4 proteins to the plasma membrane. Here we applied time-lapse total internal reflection fluorescence microscopy to study moving parameters and characters of exogenously expressed GLUT4 vesicles in basal, insulin and nocodazole treated primary rat adipocytes. Our results showed that microtubules were essential for long-range transport of GLUT4 vesicles but not obligatory for GLUT4 distribution in rat adipocytes. Insulin reduced the mobility of the vesicles, made them tethered/docked to the PM and finally had constitutive exocytosis. Moreover, long-range bi-directional movements of GLUT4 vesicles were visualized for the first time by TIRFM. It is likely that there are interactions between insulin signaling and microtubules, to regulating GLUT4 translocation in rat adipocytes.  相似文献   

18.
Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes   总被引:7,自引:1,他引:6       下载免费PDF全文
《The Journal of cell biology》1995,130(5):1081-1091
Insulin stimulates glucose transport in muscle and adipose tissue by triggering the movement of the glucose transporter GLUT-4 from an intracellular compartment to the cell surface. Fundamental to this process is the intracellular sequestration of GLUT-4 in nonstimulated cells. Two distinct targeting motifs in the amino and carboxy termini of GLUT-4 have been previously identified by expressing chimeras comprised of portions of GLUT-4 and GLUT-1, a transporter isoform that is constitutively targeted to the cell surface, in heterologous cells. These motifs-FQQI in the NH2 terminus and LL in the COOH terminus- resemble endocytic signals that have been described in other proteins. In the present study we have investigated the roles of these motifs in GLUT-4 targeting in insulin-sensitive cells. Epitope-tagged GLUT-4 constructs engineered to differentiate between endogenous and transfected GLUT-4 were stably expressed in 3T3-L1 adipocytes. Targeting was assessed in cells incubated in the presence or absence of insulin by subcellular fractionation. The targeting of epitope-tagged GLUT-4 was indistinguishable from endogenous GLUT-4. Mutation of the FQQI motif (F5 to A5) caused GLUT-4 to constitutively accumulate at the cell surface regardless of expression level. Mutation of the dileucine motif (L489L490 to A489A490) caused an increase in cell surface distribution only at higher levels of expression, but the overall cells surface distribution of this mutant was less than that of the amino- terminal mutants. Both NH2- and COOH-terminal mutants retained insulin- dependent movement from an intracellular to a cell surface locale, suggesting that neither of these motifs is involved in the insulin- dependent redistribution of GLUT-4. We conclude that the phenylalanine- based NH2-terminal and the dileucine-based COOH-terminal motifs play important and distinct roles in GLUT-4 targeting in 3T3-L1 adipocytes.  相似文献   

19.
Insulin-regulated aminopeptidase (IRAP) is an abundant cargo protein of Glut4 storage vesicles (GSVs) that traffics to and from the plasma membrane in response to insulin. We used the amino terminus cytoplasmic domain of IRAP, residues 1-109, as an affinity reagent to identify cytosolic proteins that might be involved in GSV trafficking. In this way, we identified p115, a peripheral membrane protein known to be involved in membrane trafficking. In murine adipocytes, we determined that p115 was localized to the perinuclear region by immunofluorescence and throughout the cell by fractionation. By immunofluorescence, p115 partially colocalizes with GLUT4 and IRAP in the perinuclear region of cultured fat cells. The amino terminus of p115 binds to IRAP and overexpression of a N-terminal construct results in its colocalization with GLUT4 throughout the cell. Insulin-stimulated GLUT4 translocation is completely inhibited under these conditions. Overexpression of p115 C-terminus has no significant effect on GLUT4 distribution and translocation. Finally, expression of the p115 N-terminus construct has no effect on the distribution and trafficking of GLUT1. These data suggest that p115 has an important and specific role in insulin-stimulated Glut4 translocation, probably by way of tethering insulin-sensitive Glut4 vesicles at an as yet unknown intracellular site.  相似文献   

20.
The insulin-sensitive glucose transporter GLUT4 mediates the uptake of glucose into adipocytes and muscle cells. In this study we have used a novel 96-well plate fluorescence assay to study the kinetics of GLUT4 trafficking in 3T3-L1 adipocytes. We have found evidence for a graded release mechanism whereby GLUT4 is released into the plasma membrane recycling system in a nonkinetic manner as follows: the kinetics of appearance of GLUT4 at the plasma membrane is independent of the insulin concentration; a large proportion of GLUT4 molecules do not participate in plasma membrane recycling in the absence of insulin; and with increasing insulin there is an incremental increase in the total number of GLUT4 molecules participating in the recycling pathway rather than simply an increased rate of recycling. We propose a model whereby GLUT4 is stored in a compartment that is disengaged from the plasma membrane recycling system in the basal state. In response to insulin, GLUT4 is quantally released from this compartment in a pulsatile manner, leaving some sequestered from the recycling pathway even in conditions of excess insulin. Once disengaged from this location we suggest that in the continuous presence of insulin this quanta of GLUT4 continuously recycles to the plasma membrane, possibly via non-endosomal carriers that are formed at the perinuclear region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号