首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alanine racemase catalyzes the interconversion of d- and l-alanine and plays an important role in supplying d-alanine, a component of peptidoglycan biosynthesis, to most bacteria. Alanine racemase exists mostly in prokaryotes and is generally absent in higher eukaryotes; this makes it an attractive target for the design of new antibacterial drugs. Here, we present the cloning and characterization of a new gene-encoding alanine racemase from Pseudomonas putida YZ-26. An open reading frame (ORF) of 1,230 bp, encoding a protein of 410 amino acids with a calculated molecular weight of 44,217.3 Da, was cloned into modified vector pET32M to form the recombinant plasmid pET–alr. After introduction into E.coli BL21, the strain pET-alr/E.coli BL21 expressed His6-tagged alanine racemase. The recombinant alanine racemase was efficiently purified to homogeneity using Ni2+–NTA and a gel filtration column, with 82.5% activity recovery. The amino acid sequence deduced from the alanine racemase gene revealed identity similarities of 97.0, 93, 23, and 22.0% with from P. putida F1, P. putida200, P. aeruginosa, and Salmonella typhimurium, respectively. The recombinant alanine racemase is a monomeric protein with a molecular mass of 43 kDa. The enzyme exhibited activity with l-alanine and l-isoleucine, and showed higher specificity for the former compared with the latter. The enzyme was stable from pH 7.0–11.0; its optimum pH was at 9.0. The optimum temperature for the enzyme was 37°C, and its activity was rapidly lost at temperatures above 40°C. Divalent metals, including Sr2+, Mn2+, Co2+, and Ni2+ obviously enhanced enzymatic activity, while the Cu2+ ion showed inhibitory effects.  相似文献   

2.
Free -alanine was detected in a cell extract of the fruit-body of an edible basidiomycetous mushroom, Lentinus edodes (Shiitake), by means of reverse-phase high performance liquid chromatography. We also found an amino acid racemase activity in L. edodes fruit-body, and purified the enzyme. The enzyme has a molecular weight of approximately 86,000, and consists of two subunits of identical molecular weight (44,000). The optimal pH of the enzyme activity is around pH 9.5 for both -to- and -to- alanine racemization. The enzyme requires pyridoxal 5′-phosphate as a cofactor. Km and Vmax values for -alanine were 37.3 mM and 520 nmol/min/mg, respectively; for -alanine, they were 9.21 mM and 141 nmol/min/mg, respectively. The equilibrium constant was calculated to be 1.10, which is consistent with the theoretical value for the racemase reaction. The ability of the enzyme to catalyze the racemization of various -amino acids was investigated. The enzyme catalyzes the racemization of -serine (relative reaction rate, 144% of rate for -alanine), -alanine (100%), -homoserine (17.1%), -2-aminobutyrate (5.6%), -glutamate (4.5%), and -asparagine (3.2%). To the best of our knowledge, this is the first report of an amino acid racemase produced by a basidiomycetous mushroom.  相似文献   

3.
Bifidobacterium bifidum is a useful probiotic agent exhibiting health-promoting properties, and its peptidoglycans have the potential for applications in the fields of food science and medicine. We investigated the bifidobacterial alanine racemase, which is essential in the synthesis of -alanine as an essential component of the peptidoglycans. Alanine racemase was purified to homogeneity from a crude extract of B. bifidum NBRC 14252. It consisted of two identical subunits with a molecular mass of 50 kDa. The enzyme required pyridoxal 5′-phosphate (PLP) as a coenzyme. The activity was lost in the presence of a thiol-modifying agent. The enzyme almost exclusively catalyzed the alanine racemization; other amino acids tested, except for serine, were inactive as substrates. The kinetic parameters of the enzyme suggested that the B. bifidum alanine racemase possesses comparatively low affinities for both the coenzyme (9.1 μM for PLP) and substrates (44.3 mM for -alanine; 74.3 mM for -alanine). The alr gene encoding the alanine racemase was cloned and sequenced. The alr gene complemented the -alanine auxotrophy of Escherichia coli MB2795, and an abundant amount of the enzyme was produced in cells of the E. coli MB2795 clone. The enzymologic and kinetic properties of the purified recombinant enzyme were almost the same as those of the alanine racemase from B. bifidum NBRC 14252.  相似文献   

4.
Sun S  Toney MD 《Biochemistry》1999,38(13):4058-4065
A positively charged residue, R219, was found to interact with the pyridine nitrogen of pyridoxal phosphate in the structure of alanine racemase from Bacillus stearothermophilus [Shaw et al. (1997) Biochemistry 36, 1329-1342]. Three site-directed mutants, R219K, R219A, and R219E, have been characterized and compared to the wild type enzyme (WT) to investigate the role of R219 in catalysis. The R219K mutation is functionally conservative, retaining approximately 25% of the WT activity. The R219A and R219E mutations decrease enzyme activity by approximately 100- and 1000-fold, respectively. These results demonstrate that a positively charged residue at this position is required for efficient catalysis. R219 and Y265 are connected through H166 via hydrogen bonds. The R219 mutants exhibit similar kinetic isotope effect trends: increased primary isotope effects (1.5-2-fold) but unchanged solvent isotope effects in the L --> D direction and increased solvent isotope effects (1.5-2-fold) but unchanged primary isotope effects in the D --> L direction. These results support a two-base racemization mechanism involving Y265 and K39. They additionally suggest that Y265 is selectively perturbed by R219 mutations through the H166 hydrogen-bond network. pH profiles show a large pKa shift from 7.1-7.4 (WT and R219K) to 9. 5-10.4 (R219A and R219E) for kcat/KM, and from 7.3 to 9.9-10.4 for kcat. The group responsible for this ionization is likely to be the phenolic hydroxyl of Y265, whose pKa is electrostatically perturbed in the WT by the H166-mediated interaction with R219. Accumulation of an absorbance band at 510 nm, indicative of a quinonoid intermediate, only in the D --> L direction with R219E provides additional evidence for a two-base mechanism involving Y265.  相似文献   

5.
An alanine racemase gene from Lb. reuteri was cloned by using degenerate oligonucleotides corresponding to conserved regions derived from several bacterial alanine racemases. The protein is 375αα in length and shows 63.6% homology to the Lb. plantarum alanine racemase. Unlike the single alanine racemase activity found in Lb. plantarum, deletion of the Lb. reuteri alanine racemase reveals a second activity, which is inhibited by β-chloro-D-alanine. Received: 26 June 2001 / Accepted: 30 July 2001  相似文献   

6.
The joint substitution of three active-site residues in Escherichia colil-aspartate aminotransferase increases the ratio of l-cysteine sulfinate desulfinase to transaminase activity 105-fold. This change in reaction specificity results from combining a tyrosine-shift double mutation (Y214Q/R280Y) with a non-conservative substitution of a substrate-binding residue (I33Q). Tyr214 hydrogen bonds with O3 of the cofactor and is close to Arg374 which binds the α-carboxylate group of the substrate; Arg280 interacts with the distal carboxylate group of the substrate; and Ile33 is part of the hydrophobic patch near the entrance to the active site, presumably participating in the domain closure essential for the transamination reaction. In the triple-mutant enzyme, kcat′ for desulfination of l-cysteine sulfinate increased to 0.5 s− 1 (from 0.05 s− 1 in wild-type enzyme), whereas kcat′ for transamination of the same substrate was reduced from 510 s− 1 to 0.05 s− 1. Similarly, kcat′ for β-decarboxylation of l-aspartate increased from < 0.0001 s− 1 to 0.07 s− 1, whereas kcat′ for transamination was reduced from 530 s− 1 to 0.13 s− 1. l-Aspartate aminotransferase had thus been converted into an l-cysteine sulfinate desulfinase that catalyzes transamination and l-aspartate β-decarboxylation as side reactions. The X-ray structures of the engineered l-cysteine sulfinate desulfinase in its pyridoxal-5′-phosphate and pyridoxamine-5′-phosphate form or liganded with a covalent coenzyme-substrate adduct identified the subtle structural changes that suffice for generating desulfinase activity and concomitantly abolishing transaminase activity toward dicarboxylic amino acids. Apparently, the triple mutation impairs the domain closure thus favoring reprotonation of alternative acceptor sites in coenzyme-substrate intermediates by bulk water.  相似文献   

7.
Alanine racemase of Bacillus stearothermophilus catalyzes transamination as a side reaction. Stereospecificity for the hydrogen abstraction from C-4′ of pyridoxamine 5′-phosphate occurring in the latter half transamination was examined. Both apo-wild-type and apo-fragmentary alanine racemases abstracted approximately 20 and 80% of tritium from the stereospecifically-labeled (4′S)- and (4′R)-[4′-3H]PMP, respectively, in the presence of pyruvate. Alanine racemase catalyzes the abstraction of both 4′S- and 4′R-hydrogen like amino acid racemase with broad substrate specificity. However, R-isomer preference is a characteristic property of alanine racemase.  相似文献   

8.
l-2-Aminobutyric acid can be synthesized in a transamination reaction from l-threonine and l-aspartic acid as substrates by the action of threonine deaminase and aromatic aminotransferase, but the by-product l-alanine was produced simultaneously. A small amount of l-alanine increased the complexity of the l-2-aminobutyric acid recovery process because of their extreme similarity in physical and chemical properties. Acetolactate synthase has been introduced to remove the pyruvate intermediate for reducing the l-alanine concentration partially. To eliminate the remnant l-alanine, alanine racemase of Bacillus subtilis in combination with d-amino acid oxidase of Rhodotorula gracilis or Trigonopsis variabilis respectively was introduced into the reaction system for the l-2-aminobutyric acid synthesis. l-Alanine could be completely removed by the action of alanine racemase of B. subtilis and d-amino acid oxidase of R. gracilis; thereby, high-purity l-2-aminobutyric acid was achieved. The results revealed that alanine racemase could discriminate effectively between l-alanine and l-2-aminobutyric acid, and selectively catalyzed l-alanine to d-alanine reversibly. d-Amino acid oxidase then catalyzed d-alanine to pyruvate stereoselectively. Furthermore, this method was also successfully used to remove the by-product l-alanine in the production of other neutral amino acids such as l-tertiary leucine and l-valine, suggesting that multienzymatic whole-cell catalysis can be employed to provide high purity products.  相似文献   

9.
Corynebacterium glutamicum was genetically engineered to produce l-alanine from sugar under oxygen deprivation. The genes associated with production of organic acids in C. glutamicum were inactivated and the alanine dehydrogenase gene (alaD) from Lysinibacillus sphaericus was overexpressed to direct carbon flux from organic acids to alanine. Although the alaD-expressing strain produced alanine from glucose under oxygen deprivation, its productivity was relatively low due to retarded glucose consumption. Homologous overexpression of the gapA gene encoding glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in the alaD-expressing strain stimulated glucose consumption and consequently improved alanine productivity. In contrast gapA overexpression did not affect glucose consumption under aerobic conditions, indicating that oxygen deprivation engendered inefficient regeneration of NAD+ resulting in impaired GAPDH activity and reduced glucose consumption in the alanine-producing strains. Inactivation of the alanine racemase gene allowed production of l-alanine with optical purity greater than 99.5%. The resulting strain produced 98 g l−1 of l-alanine after 32 h in mineral salts medium. Our results show promise for amino acid production under oxygen deprivation.  相似文献   

10.
Alanine racemase of Bacillus stearothermophilus has been proposed to catalyze alanine racemization by means of two catalytic bases: lysine 39 (K39) abstracting specifically the alpha-hydrogen of D-alanine and tyrosine 265 (Y265) playing the corresponding role for the antipode L-alanine. The role of K39 as indicated has already been verified [Watanabe, A., Kurokawa, Y., Yoshimura, T., Kurihara, T., Soda, K., and Esaki, N. (1999) J. Biol. Chem. 274, 4189-4194]. We here present evidence for the functioning of Y265 as the base catalyst specific to L-alanine. The Y265-->Ala mutant enzyme (Y265A), like Y265S and Y265F, was a poor catalyst for alanine racemization. However, Y265A and Y265S catalyzed transamination with D-alanine much more rapidly than the wild-type enzyme, and the bound coenzyme, pyridoxal 5'-phosphate (PLP), was converted to pyridoxamine 5'-phosphate (PMP). The rate of transamination catalyzed by Y265F was about 9% of that by the wild-type enzyme. However, Y265A, Y265S, and Y265F were similar in that L-alanine was inert as a substrate in transamination. The apo-form of the wild-type enzyme catalyzes the abstraction of tritium non-specifically from both (4'S)- and (4'R)-[4'-(3)H]PMP in the presence of pyruvate. In contrast, apo-Y265A abstracts tritium virtually from only the R-isomer. This indicates that the side-chain of Y265 abstracts the alpha-hydrogen of L-alanine and transfers it supra-facially to the pro-S position at C-4' of PMP. Y265 is the counterpart residue to K39 that transfers the alpha-hydrogen of D-alanine to the pro-R position of PMP.  相似文献   

11.
The joint substitution of three active-site residues in Escherichia coli (L)-aspartate aminotransferase increases the ratio of l-cysteine sulfinate desulfinase to transaminase activity 10(5)-fold. This change in reaction specificity results from combining a tyrosine-shift double mutation (Y214Q/R280Y) with a non-conservative substitution of a substrate-binding residue (I33Q). Tyr214 hydrogen bonds with O3 of the cofactor and is close to Arg374 which binds the α-carboxylate group of the substrate; Arg280 interacts with the distal carboxylate group of the substrate; and Ile33 is part of the hydrophobic patch near the entrance to the active site, presumably participating in the domain closure essential for the transamination reaction. In the triple-mutant enzyme, k(cat)' for desulfination of l-cysteine sulfinate increased to 0.5s(-1) (from 0.05s(-1) in wild-type enzyme), whereas k(cat)' for transamination of the same substrate was reduced from 510s(-1) to 0.05s(-1). Similarly, k(cat)' for β-decarboxylation of l-aspartate increased from<0.0001s(-1) to 0.07s(-1), whereas k(cat)' for transamination was reduced from 530s(-1) to 0.13s(-1). l-Aspartate aminotransferase had thus been converted into an l-cysteine sulfinate desulfinase that catalyzes transamination and l-aspartate β-decarboxylation as side reactions. The X-ray structures of the engineered l-cysteine sulfinate desulfinase in its pyridoxal-5'-phosphate and pyridoxamine-5'-phosphate form or liganded with a covalent coenzyme-substrate adduct identified the subtle structural changes that suffice for generating desulfinase activity and concomitantly abolishing transaminase activity toward dicarboxylic amino acids. Apparently, the triple mutation impairs the domain closure thus favoring reprotonation of alternative acceptor sites in coenzyme-substrate intermediates by bulk water.  相似文献   

12.
Rhodopseudomonas acidophila strain 7050 can satisfy all its nitrogen and carbon requirements from l-alanine. Addition of 100 M methionine sulfoximine to alanine grown cultures had no effect on growth rate indicating that deamination of alanine via alanine dehydrogenase and re-assimilation of the released NH 4 + by glutamine synthetase/glutamate synthase was an insignificant route of nitrogen transfer in this bacterium. Determination of aminotransferase activities in cell-free extracts failed to demonstrate the presence of direct routes from alanine to either aspartate or glutamate. The only active aminotransferase involving l-alanine was the alanine-glyoxylate enzyme (114–167 nmol·min–1·mg–1 protein) which produced glycine as end-product. The amino group of glycine was further transaminated to yield aspartate via a glycineoxaloacetate aminotransferase (117–136 nmol·min–1 ·mg–1 protein). No activity was observed when 2-oxoglutarate was substituted for oxaloacetate. The formation of glutamate from aspartate was catalysed by aspartate-2-oxoglutarate aminotransferase (85–107 nmol·min–1·mg–1 protein). Determinations of free intracellular amino acid pools in alanine and alanine+100 M methionine sulfoximine grown cells showed the predominance of glutamate, glycine and aspartate, providing further evidence that in alanine grown cultures R. acidophila satisfies its nitrogen requirements for balanced growth by transamination.Abbreviations ADH alanine dehydrogenase - GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase - MSO methionine sulfoximine - GOT glutamate-oxaloacetate aminotransferase - GPT glutamate-pyruvate amino-transferase - AGAT alanine-glyoxylate aminotransferase - GOAT glycine-oxaloacetate aminotransferase - GOTAT glycine-2-oxoglutarate aminotransferase - AOAT alanine-oxaloacetate aminotransferase  相似文献   

13.
The basis for disruption of morphogenesis by depletion of pyridoxine derivatives was studied using a pdxH null mutant of Escherichia coli K-12. Removal of pyridoxal from growing cultures severely inhibited murein synthesis in vivo, whereas simultaneous supplementation with d-alanine effectively prevented inhibition. Extractable alanine racemase was low following such starvation. Selection of mutants overcoming the glycine- or temperature-sensitivity imposed by pyridoxine limitation yielded a variety of phenotypes. The most effective of these extragenic suppressors conferred an elevated alanine racemase activity which was resistant to the effects of pyridoxal removal.Abbreviations Glys glycine-sensitive phenotype - Ts temperature-sensitive phenotype - DAP 2,6-diaminopimelic acid - SDS sodium dodecylsulfate  相似文献   

14.
Uroporphyrinogen III synthase (U3S) is one of the key enzymes in the biosynthesis of tetrapyrrole compounds. It catalyzes the cyclization of the linear hydroxymethylbilane (HMB) to uroporphyrinogen III (uro’gen III). We have determined the crystal structure of U3S from Pseudomonas syringae pv. tomato DC3000 (psU3S) at 2.5 Å resolution by the single wavelength anomalous dispersion (SAD) method. Each psU3S molecule consists of two domains interlinked by a two-stranded antiparallel β-sheet. The conformation of psU3S is different from its homologous proteins because of the flexibility of the linker between the two domains, which might be related to this enzyme’s catalytic properties. Based on mutation and activity analysis, a key residue, Arg219, was found to be important for the catalytic activity of psU3S. Mutation of Arg219 to Ala caused a decrease in enzymatic activity to about 25% that of the wild type enzyme. Our results provide the structural basis and biochemical evidence to further elucidate the catalytic mechanism of U3S.  相似文献   

15.
Escherichia coli W was genetically engineered to produce l-alanine as the primary fermentation product from sugars by replacing the native d-lactate dehydrogenase of E. coli SZ194 with alanine dehydrogenase from Geobacillus stearothermophilus. As a result, the heterologous alanine dehydrogenase gene was integrated under the regulation of the native d-lactate dehydrogenase (ldhA) promoter. This homologous promoter is growth-regulated and provides high levels of expression during anaerobic fermentation. Strain XZ111 accumulated alanine as the primary product during glucose fermentation. The methylglyoxal synthase gene (mgsA) was deleted to eliminate low levels of lactate and improve growth, and the catabolic alanine racemase gene (dadX) was deleted to minimize conversion of l-alanine to d-alanine. In these strains, reduced nicotinamide adenine dinucleotide oxidation during alanine biosynthesis is obligately linked to adenosine triphosphate production and cell growth. This linkage provided a basis for metabolic evolution where selection for improvements in growth coselected for increased glycolytic flux and alanine production. The resulting strain, XZ132, produced 1,279 mmol alanine from 120 g l−1 glucose within 48 h during batch fermentation in the mineral salts medium. The alanine yield was 95% on a weight basis (g g−1 glucose) with a chiral purity greater than 99.5% l-alanine. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
β-Chloro-l-alanine was catalytically converted to pyruvate, ammonia and chloride by α-aminoisobutyrate (AIB) decomposing enzyme (α, β elimination), which was synchronously inactivated. There was a linear relationship between α, β elimination and inactivation. With apoenzyme, neither α, β elimination nor inactivation occurred. These facts suggest that α, β elimination is dependent on pyridoxal 5′-phosphate, and inactivation cooperates with α, β elimination (syncatalytic inactivation). But it seemed that d-form of β-chloroalanine was not a substrate for AIB decomposing enzyme, because just half amount of β-chloro-dl-alanine was decomposed to pyruvate by the enzyme.

An identical active site for each of following three reactions were shown by the fact that AIB decomposing activity, transamination activity and α, β elimination activity were lost in parallel. From a kinetic study, the affinity of the enzyme toward β-chloro-l-alanine was shown to be higher than that toward AIB or l-alanine. The turnover number, about 8,000, of α, β elimination during the inactivation of one mol of the enzyme was much larger than that of d-amino acid transaminase or alanine racemase.  相似文献   

17.
The maximum activity of Yersinia enterocolitica phytase (YeAPPA) occurs at pH 5.0 and 45 °C, and notably, its specific activity (3.28 ± 0.24 U mg−1) is 800-fold less than that of its Yersinia kristeensenii homolog (YkAPPA; 88% amino acid sequence identity). Sequence alignment and molecular modeling show that the arginine at position 79 (Arg79) in YeAPPA corresponding to Gly in YkAPPA as well as other histidine acid phosphatase (HAP) phytases is the only non-conserved residue near the catalytic site. To characterize the effects of the corresponding residue on the specific activities of HAP phytases, Escherichia coli EcAPPA, a well-characterized phytase with a known crystal structure, was selected for mutagenesis—its Gly73 was replaced with Arg, Asp, Glu, Ser, Thr, Leu, or Tyr. The results show that the specific activities of all of the corresponding EcAPPA mutants (17–2,400 U mg−1) were less than that of the wild-type phytase (3,524 U mg−1), and the activity levels were approximately proportional to the molecular volumes of the substituted residues’ side chains. Site-directed replacement of Arg79 in YeAPPA (corresponding to Gly73 of EcAPPA) with Ser, Leu, and Gly largely increased the specific activity, which further verified the key role of the residue at position 79 for determining phytase activity. Thus, a new determinant that influences the catalytic efficiency of HAP phytases has been identified.  相似文献   

18.
Fenn TD  Holyoak T  Stamper GF  Ringe D 《Biochemistry》2005,44(14):5317-5327
The requirement for d-alanine in the peptidoglycan layer of bacterial cell walls is fulfilled in part by alanine racemase (EC 5.1.1.1), a pyridoxal 5'-phosphate (PLP)-assisted enzyme. The enzyme utilizes two antiparallel bases focused at the C(alpha) position and oriented perpendicular to the PLP ring to facilitate the equilibration of alanine enantiomers. Understanding how this two-base system is utilized and controlled to yield reaction specificity is therefore a potential means for designing antibiotics. Cycloserine is a known alanine racemase suicide substrate, although its mechanism of inactivation is based on transaminase chemistry. Here we characterize the effects of a Y265F mutant (Tyr265 acts as the catalytic base in the l-isomer case) of Bacillus stearothermophilus alanine racemase on cycloserine inactivation. The Y265F mutant reduces racemization activity 1600-fold [Watanabe, A., Yoshimura, T., Mikami, B., and Esaki, N. (1999) J. Biochem. 126, 781-786] and only leads to formation of the isoxazole end product (the result of the transaminase pathway) in the case of d-cycloserine, in contrast to results obtained using the wild-type enzyme. l-Cycloserine, on the other hand, utilizes a number of alternative pathways in the absence of Y265, emphasizing the importance of Y265 in both the inactivation and racemization pathway. In combination with the kinetics of inactivation, these results suggest roles for each of the two catalytic bases in racemization and inactivation, as well as the importance of Y265 in "steering" the chemistry to favor one pathway over another.  相似文献   

19.
A Tn5 insertional prototrophic mutant of Paracoccus denitrificans (UBM219) was generated which grew on high (>1 mM) but not low (<0.5 mM) ammonium as sole nitrogen source. It did not utilize nitrate and most amino acids except glutamate and aspartate. UBM219 showed more than 10-fold lower levels of ammonium (methylammonium) transport, aspartate and alanine aminotransferase, but more than 10-fold higher activities of glutamate dehydrogenase and glutamate synthase. This pleiotropy indicates a mutation in a regulatory gene affecting nitrogen metabolism in general. — Ammonia assimilation pathways and regulation in Paracoccus resemble the patterns in enterobacteria with the exception, that alanine is generated by amino transfer from glutamate to pyruvate.Non-standard abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GluDH glutamate dehydrogenase - GPT glutamate/pyruvate aminotransferase - GOT glutamate/oxaloacetate aminotransferase  相似文献   

20.
Isocitrate dehydrogenase (IDH), a housekeeping gene, has drawn the attention of cancer experts. Mutation of the catalytic Arg132 residue of human IDH1 (HcIDH) eliminates the enzyme''s wild-type isocitrate oxidation activity, but confer the mutant an ability of reducing α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG). To examine whether an analogous mutation in IDHs of other eukaryotes could cause similar effects, two yeast mitochondrial IDHs, Saccharomyces cerevisiae NADP+-IDH1 (ScIDH1) and Yarrowia lipolytica NADP+-IDH (YlIDH), were studied. The analogous Arg residues (Arg148 of ScIDH1 and Arg141 of YlIDH) were mutated to His. The K m values of ScIDH1 R148H and YlIDH R141H for isocitrate were determined to be 2.4-fold and 2.2-fold higher, respectively, than those of the corresponding wild-type enzymes. The catalytic efficiencies (k cat/K m) of ScIDH1 R148H and YlIDH R141H for isocitrate oxidation were drastically reduced by 227-fold and 460-fold, respectively, of those of the wild-type enzymes. As expected, both ScIDH1 R148H and YlIDH R141H acquired the neomorphic activity of catalyzing α-KG to 2-HG, and the generation of 2-HG was confirmed using gas chromatography/time of flight-mass spectrometry (GC/TOF-MS). Kinetic analysis showed that ScIDH1 R148H and YlIDH R141H displayed 5.2-fold and 3.3-fold higher affinities, respectively, for α-KG than the HcIDH R132H mutant. The catalytic efficiencies of ScIDH1 R148H and YlIDH R141H for α-KG were 5.5-fold and 4.5-fold, respectively, of that of the HcIDH R132H mutant. Since the HcIDH Arg132 mutation is associated with the tumorigenesis, this study provides fundamental information for further research on the physiological role of this IDH mutation in vivo using yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号