首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 738 毫秒
1.
2.
The glycosyl-phosphatidylinositol anchored protein, membrane dipeptidase (EC 3.4.13.19) is released from the surface of 3T3-L1 adipocytes in response to insulin treatment through the action of a phospholipase C. The present study investigates the role of guanine-nucleotide binding proteins (G-proteins) in this process. Treatment of permeabilized 3T3-L1 adipocytes with GTPgammaS did not cause release of membrane dipeptidase into the medium, while GDPbetaS did not inhibit the insulin-stimulated release of membrane dipeptidase. Other activators of G-proteins, including the tetradecapeptide mastoparan, pertussis toxin and AlF3, also caused no significant release of membrane dipeptidase from the surface of the 3T3-L1 adipocytes. From these observations it is concluded that G-proteins are not involved in the insulin-stimulated release of membrane dipeptidase. Although X-Pro aminopeptidase (EC 3.4.11.9) is GPI-anchored in 3T3-L1 adipocytes as shown by digestion with bacterial phosphatidylinositol-specific phospholipase C, it was not released upon insulin treatment of the cells, indicating that only a subset of the GPI-anchored proteins are susceptible to insulin-stimulated release.  相似文献   

3.
The glycosyl-phosphatidylinositol anchored protein, membrane dipeptidase (EC 3.4.13.19) is released from the surface of 3T3-L1 adipocytes in response to insulin treatment through the action of a phospholipase C. The present study investigates the role of guanine-nucleotide binding proteins (G-proteins) in this process. Treatment of permeabilized 3T3-L1 adipocytes with GTP gamma S did not cause release of membrane dipeptidase into the medium, while GDP beta S did not inhibit the insulin-stimulated release of membrane dipeptidase. Other activators of G-proteins, including the tetradecapeptide mastoparan, pertussis toxin and AlF, also caused no significant release of membrane dipeptidase from the surface of the 3T3-L1 adipocytes. From these observations it is concluded that G-proteins are not involved in the insulin stimulated release of membrane dipeptidase. Although X-Pro aminopept idase (EC 3.4.11.9) is GPI-anchored in 3T3-L1 adipocytes as shown by digestion with bacterial phosphatidylinositol specific phospholipase C, it was not released upon insulin treatment of the cells, indicating that only a subset of the GPI-anchored proteins are susceptible to insulin-stimulated release.  相似文献   

4.
Insulin stimulates the acute release of adipsin from 3T3-L1 adipocytes   总被引:3,自引:0,他引:3  
The release of adipsin, a serine proteinase with complement factor D activity, from 3T3-L1 adipocytes was measured by quantitative immunoblotting. This protein is secreted constitutively from 3T3-L1 adipocytes, and there is a 2-fold increase in the amount of adipsin released from cells treated with insulin for 1 to 10 min. Longer exposure to insulin had no further effect on the rate of adipsin release. Adipsin does not appear to be anchored by a glycosylphosphatidylinositol moiety, since adipsin which was been released with Triton X-114 from an intracellular membrane fraction partitions into the aqueous phase. Using a previously described procedure for the isolation of vesicles containing the insulin-responsive intracellular glucose transporters (GT vesicles), we show here that these GT vesicles contain an insulin-responsive pool of adipsin. Thus, insulin stimulates the secretion of a soluble protein, adipsin, as well as translocation to the plasma membrane of integral membrane proteins, including the glucose transporter, the transferrin receptors, and the insulin-like growth factor II receptor.  相似文献   

5.
Glucagon-like peptide-1 (7–36) amide (GLP-1), in addition to its well known effect of enhancing glucose-mediated insulin release, has been shown to have insulinomimetic effects and to enhance insulin-mediated glucose uptake and lipid synthesis in 3T3-L1 adipocytes. To elucidate the mechanisms of GLP-1 action in these cells, we studied the signal transduction and peptide specificity of the GLP-1 response. In 3T3-L1 adipocytes, GLP-1 caused a decrease in intracellular cAMP levels which is the opposite to the response observed in pancreatic beta cells in response to the same peptide. In 3T3-L1 adipocytes, free intracellular calcium was not modified by GLP-1. Peptide specificity was examined to help determine if a different GLP receptor isoform was expressed in 3T3-L1 adipocytes vs. beta cells. Peptides with partial homology to GLP-1 such as GLP-2, GLP-1 (1–36), and glucagon all lowered cAMP levels in 3T3-L1 adipocytes. In addition, an antagonist of pancreatic GLP-1 receptor, exendin-4 (9–39), acted as an agonist to decrease cAMP levels in 3T3-L1 adipocytes as did exendin-4 (1–39), a known agonist for the pancreatic GLP-1 receptor. Binding studies using 125I-GLP-1 also suggest that pancreatic GLP-1 receptor isoform is not responsible for the effect of GLP-1 and related peptides in 3T3-L1 adipocytes. Based on these results, we propose that the major form of the GLP receptor in 3T3-L1 adipocytes is functionally different from the pancreatic GLP-1 receptor. J. Cell. Physiol. 172:275–283, 1997. Published 1997 Wiley-Liss, Inc.
  • 1 This article was prepared by a group of United States government employees and non-United States government employees, and as such is subject to 17 U.S.C. Sec. 105.
  •   相似文献   

    6.
    原核生物、真核生物、植物体的非神经细胞和组织中,尤其是多种免疫活性细胞中,均证实乙酰胆碱酯酶(acetylcholinesterase,AChE)、胆碱乙酰转移酶(choline acetyltransferase,ChAT)和乙酰胆碱受体(acetylcholine receptor, AChR)各亚型在内的胆碱能系统组分的存在,其中烟碱样乙酰胆碱受体α7(nicotinic acetylcholine receptor α7,nAChRα7)是烟碱样胆碱能抗炎通路(nicotinic anti-inflammatory pathway)中重要的分子核心机制,同时也是机体限制宿主防御反应扩大的内源性抗炎机制之一. 本文旨在探讨(前)脂肪细胞上非神经元型胆碱能系统是否存在及初步揭示烟碱样胆碱能受体α7对前脂肪细胞功能的影响. 以体外培养的3T3-L1前脂肪细胞为研究对象,采用免疫组化和蛋白质免疫印迹技术,分别检测前脂肪细胞和成熟脂肪细胞中乙酰胆碱酯酶、胆碱乙酰转移酶和烟碱样乙酰胆碱受体α7的3种胆碱能系统主要组分的蛋白表达. 另将前脂肪细胞分为给予广谱烟碱样乙酰胆碱受体激动剂尼古丁、特异性烟碱样乙酰胆碱受体α7激动剂氯化胆碱及特异性烟碱样乙酰胆碱受体α7拮抗剂甲基牛扁亭碱干预12 h、24 h、36 h,并设立相应处理时间的空白对照组,逆转录聚合酶链反应检测前脂肪细胞visfatin mRNA表达情况. 免疫组化染色可见前脂肪细胞中AChE、ChAT及AChRα7均有阳性表达;蛋白免疫印迹检测进一步半定量证实了前脂肪细胞和成熟脂肪细胞中AChE、ChAT及AChRα7的蛋白表达;拮抗剂甲基牛扁亭碱(106~104mol/L)时间、剂量依赖性上调前脂肪细胞visfatin mRNA表达(1.3~1.55fold,P<0.01),与对应空白对照组相比,存在显著性统计学差异; 加入不同剂量的尼古丁和氯化胆碱,则前脂肪细胞中visfatin mRNA表达水平与对应空白对照组相比,均不同程度地下降,其中以氯化胆碱的抑制效应更为显著. 前脂肪细胞与成熟脂肪细胞中均存在有独立的胆碱能体系,其中AChRα7很可能在调节脂肪细胞因子分泌及肥胖相关的病理生理过程中发挥重要作用.  相似文献   

    7.
    Adipocytes behave as a rich source of adipokines, which may be the link between obesity and its complications. Endoplasmic reticulum (ER) stress in adipocytes can modulate adipokines secretion. The aim of this study is to evaluate the effect of oxidized low density lipoprotein(ox-LDL)treatment on ER stress and adipokines secretion in differentiated adipocytes. 3T3-L1 pre-adipocytes were cultured and differentiated into mature adipocytes in vitro. Differentiated adipocytes were incubated with various concentrations of ox-LDL (0-100 µg/ml) for 48 hours; 50µg/ml ox-LDL for various times (0-48 hours) with or without tauroursodeoxycholic acid (TUDCA) (0-400µM) pre-treatment. The protein expressions of ER stress markers, glucose regulated protein 78(GRP78) and CCAAT/enhancer binding protein [C/EBP] homologous protein (CHOP) in adipocytes were detected by Western blot. The mRNA expressions of visfatin and resistin were measured by real-time PCR and the protein release of visfatin and resistin in supernatant were determined by ELISA. Treatment with ox-LDL could increase the cholesterol concentration in adipocytes. Ox-LDL induced the expressions of GRP78 and CHOP protein in adipocytes and promoted visfatin and resistin secretion in culture medium in dose and time-dependent manner. TUDCA could attenuate the effect of ox-LDL on GRP78 and CHOP expressions and reduce visfatin and resistin at mRNA and protein level in dose-dependent manner. In conclusion, ox-LDL promoted the expression and secretion of visfatin and resistin through its activation of ER stress, which may be related to the increase of cholesterol load in adipocytes.  相似文献   

    8.
    3T3-L1 adipocytes in culture incorporated [35S]methionine into a protein which could be immunoprecipitated with chicken antiserum to bovine lipoprotein lipase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed this protein had an Mr of 55,000, similar to that of bovine lipoprotein lipase, and accounted for 0.1-0.5% of total protein synthesis in the adipocytes. Lipoprotein lipase protein was present in small amounts in confluent 3T3-L1 fibroblasts, and the amount increased many-fold as the cells differentiated into adipocytes. This increase was accompanied by parallel increases in cellular lipase activity and secretion. When cells were grown with [35S]methionine, the amount of label incorporated into lipoprotein lipase increased for 2 h and then leveled off. Pulse-chase experiments showed that half-life of newly synthesized lipase was about 1 h. Turnover of lipoprotein lipase in control cells involved both release to the medium and intracellular degradation. When N-linked glycosylation was blocked by tunicamycin, the cells synthesized a form of lipase that had a smaller Mr (48,000), was catalytically inactive, and was not released to the medium. Radioimmunoassay demonstrated that 3T3-L1 adipocytes contained an unexpectedly large amount of lipoprotein lipase protein. 55% of the enzyme protein in acetone/ether powder of the cells was insoluble in 50 mM NH3/NH4Cl at pH 8.1, a solution commonly used to extract lipoprotein lipase; 27% of the lipase protein was soluble but did not bind to heparin-Sepharose and had very low lipase activity; and the remaining 13% was soluble, bound to heparin-Sepharose, and had high lipolytic activity. About one-half of the lipase released spontaneously to the medium was inactive, and lipase inactivation proceeded in the medium with little loss of enzyme protein. Lipoprotein lipase released heparin, in contrast, was fully active and more stable. When protein synthesis was blocked by cycloheximide, the level of lipoprotein lipase activity in adipocytes decreased more rapidly than the amount of lipase protein in the cells. Most of the inactive lipoprotein lipase in adipocytes probably results from dissociation of active dimeric lipase, but some could be a precursor of active enzyme.  相似文献   

    9.
    It has been recently reported that activation of PPAR-delta, by specific agonists or genetic manipulation, alleviates dyslipidemia, hyperglycemia, and insulin resistance in animal models of obesity and type 2 diabetes. The purpose of the present study was to determine whether the PPAR-delta agonist has a direct effect on adipokines in visceral adipose tissue of rats and in cultured adipocytes. We examined the expression of visfatin, adiponectin, and resistin mRNA in visceral adipose tissue of Wistar rats fed a high-fat diet and 3T3-L1 adipocytes treated with PPAR-delta agonist (L-165041). Body weight and biochemical measurements were performed. Rats fed a high-fat diet showed a greater increase in body weight than those fed a standard diet (P<0.05), and treatment with L-165041 (10 mg/kg/day) significantly decreased weight gain (P<0.05). The concentration of total cholesterol was lower, and HDL cholesterol was higher in L-165041-treated rats (P<0.05). In the visceral adipose tissue of L-165041-treated rats, visfatin and adiponectin mRNA levels significantly increased compared to those of the untreated rats (P<0.05). However, the expression of resistin decreased in the L-165041-treated rats. Furthermore, in cultured 3T3-L1 adipocytes, the level of visfatin and adiponectin mRNA was up-regulated in response to L-165041 treatment for nine days. By contrast, resistin mRNA levels were down-regulated by L-165041 treatment. The present study provides a novel evidence to suggest that the PPAR-delta agonist has regulatory effects on a variety of adipokines, and these effects might explain some of their metabolic function.  相似文献   

    10.
    The effects of PPAR-gamma agonists, thiazolidinediones (TZDs), on preadipocytes isolated from rat mesenteric adipose tissue and murine cell line 3T3-L1 were compared using an in vitro cell culture system. After each cell formed a confluent monolayer under appropriate medial conditions, pioglitazone or troglitazone was applied at 10 microM to each medium for cell maturation. We observed morphological changes in each cell, especially the accumulation of lipid droplets in the cytoplasm, during the culture periods. At the end of culture, DNA content, triglyceride (TG) content and glycerol-3-phosphate dehydrogenase (GPDH) activity were determined. Adiponectin concentrations in each culture medium were also measured during appropriate experimental periods. Application of TZDs increased the DNA content, TG accumulation and GPDH activity in the 3T3-L1 cells but not in the mesenteric adipocytes. Although TG accumulation was unchanged, the number of lipid particles was decreased and the size of lipid particles in the mesenteric adipocytes was increased by TZD application. Although the TZDs increased adiponectin release from the 3T3-L1 cells, adiponectin release from mesenteric adipocytes was suppressed (P<0.05). Thus, the effects of TZDs differed between the primary culture of mesenteric adipose cells and the line cell culture of 3T3-L1 cells. The source of adipocytes is an important factor in determining the action of TZDs in vitro, and particular attention should be paid when evaluating the effect of PPAR-gamma agonists on adipose tissues.  相似文献   

    11.
    The sympathetic nervous system plays a central role in lipolysis and the production of leptin in white adipose tissue (WAT). In this study, we have examined whether nerve growth factor (NGF), a target-derived neurotropin that is a key signal in the development and survival of sympathetic neurons, is expressed and secreted by white adipocytes. NGF mRNA was detected by RT-PCR in the major WAT depots of mice (epididymal, perirenal, omental, mesenteric, subcutaneous) and in human fat (subcutaneous, omental). In mouse WAT, NGF expression was observed in mature adipocytes and in stromal vascular cells. NGF expression was also evident in 3T3-L1 cells before and after differentiation into adipocytes. NGF protein, measured by ELISA, was secreted from 3T3-L1 cells, release being higher before differentiation. Addition of the sympathetic agonists norepinephrine, isoprenaline, or BRL-37344 (beta(3)-agonist) led to falls in NGF gene expression and secretion by 3T3-L1 adipocytes, as did IL-6 and the PPARgamma agonist rosiglitazone. A substantial decrease in NGF expression and secretion occurred with dexamethasone. In contrast, LPS increased NGF mRNA levels and NGF secretion. A major increase in NGF mRNA level (9-fold) and NGF secretion (相似文献   

    12.
    13.
    The protein product of the c-Cbl proto-oncogene is prominently tyrosine phosphorylated in response to insulin in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. After insulin-dependent tyrosine phosphorylation, c-Cbl specifically associates with endogenous c-Crk and Fyn. These results suggest a role for tyrosine-phosphorylated c-Cbl in 3T3-L1 adipocyte activation by insulin. A yeast two-hybrid cDNA library prepared from fully differentiated 3T3-L1 adipocytes was screened with full-length c-Cbl as the target protein in an attempt to identify adipose-specific signaling proteins that interact with c-Cbl and potentially are involved in its tyrosine phosphorylation in 3T3-L1 adipocytes. Here we describe the isolation and the characterization of a novel protein that we termed CAP for c-Cbl-associated protein. CAP contains a unique structure with three adjacent Src homology 3 (SH3) domains in the C terminus and a region showing significant sequence similarity with the peptide hormone sorbin. Both CAP mRNA and proteins are expressed predominately in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. CAP associates with c-Cbl in 3T3-L1 adipocytes independently of insulin stimulation in vivo and in vitro in an SH3-domain-mediated manner. Furthermore, we detected the association of CAP with the insulin receptor. Insulin stimulation resulted in the dissociation of CAP from the insulin receptor. Taken together, these data suggest that CAP represents a novel c-Cbl binding protein in 3T3-L1 adipocytes likely to participate in insulin signaling.  相似文献   

    14.
    3T3-L1 adipocytes have proven difficult to transfect with plasmid-encoded cDNAs or even infect with virally-derived cDNAs. We have developed and characterized a 3T3-L1 adipocyte cell line stably expressing the truncated receptor for coxsackievirus and adenovirus receptor (CAR) for its ability to be infected with adenoviruses at a low multiplicity of infection (m.o.i.). Using green fluorescent protein driven by the cytomegalovirus promoter in adenovirus fiber type 5 we compared infection efficiencies of CAR adipocytes versus the parental 3T3-L1 adipocytes. As assessed by immunofluorescence, CAR adipocytes were infected at approximately 100-fold greater efficiency than regular 3T3-L1 adipocytes. The efficiency of transduction for the CAR adipocytes was >90% at multiplicities of infection of 50 whereas standard adipocytes were poorly transduced even at an m.o.i. of 2000. Since many investigators studying insulin action use 3T3-L1 adipocytes, we compared CAR adipocytes versus regular adipocytes and showed that the two cell lines were similar with respect to insulin stimulation of insulin receptor, MAPK, and Akt phosphorylation and basal- and insulin-stimulated glucose transport. In addition, CAR adipocytes accumulated GLUT4 and SCD1 proteins during the adipogenesis program with the same time course as regular 3T3-L1 adipocytes. Lastly, CAR adipocytes produced and secreted the adipose-specific hormone Acrp30. These data suggest 3T3-L1CARDelta1 adipocytes are virtually indistinguishable from their parental cells, but demonstrate a significant advantage with improved efficiency of adenoviral transduction for gain or deletion of function studies.  相似文献   

    15.
    Visfatin (also termed pre-B-cell colony-enhancing factor (PBEF) or nicotinamide phosphoribosyltransferase (Nampt)) is a pleiotropic mediator acting on many inflammatory processes including osteoarthritis. Visfatin exhibits both an intracellular enzymatic activity (nicotinamide phosphoribosyltransferase, Nampt) leading to NAD synthesis and a cytokine function via the binding to its hypothetical receptor. We recently reported the role of visfatin in prostaglandin E(2) (PGE(2)) synthesis in chondrocytes. Here, our aim was to characterize the signaling pathways involved in this response in exploring both the insulin receptor (IR) signaling pathway and Nampt activity. IR was expressed in human and murine chondrocytes, and visfatin triggered Akt phosphorylation in murine chondrocytes. Blocking IR expression with siRNA or activity using the hydroxy-2-naphthalenyl methyl phosphonic acid tris acetoxymethyl ester (HNMPA-(AM)(3)) inhibitor diminished visfatin-induced PGE(2) release in chondrocytes. Moreover, visfatin-induced IGF-1R(-/-) chondrocytes released higher concentration of PGE(2) than IGF-1R(+/+) cells, a finding confirmed with an antibody that blocked IGF-1R. Using RT-PCR, we found that visfatin did not regulate IR expression and that an increased insulin release was also unlikely to be involved because insulin was unable to increase PGE(2) release. Inhibition of Nampt activity using the APO866 inhibitor gradually decreased PGE(2) release, whereas the addition of exogenous nicotinamide increased it. We conclude that the proinflammatory actions of visfatin in chondrocytes involve regulation of IR signaling pathways, possibly through the control of Nampt enzymatic activity.  相似文献   

    16.
    STAT6 is abundantly expressed in 3T3-L1 preadipocytes and adipocytes but activating ligands are not well defined. In this report, we provide evidence that interleukin 4 (IL-4) induced JAK2-mediated STAT6 tyrosine phosphorylation and DNA binding in 3T3-L1 preadipocytes but not in 3T3-L1 adipocytes. Loss of IL-4-mediated STAT6 tyrosine phosphorylation occurred 2 days after preadipocytes were induced to differentiate into adipocytes but when cells remained phenotypically preadipocytes. 3T3-L1 adipocytes were still responsive to IL-4 through tyrosine phosphorylation of other cellular proteins. We conclude that IL-4 signals through STAT6 in 3T3-L1 preadipocytes but not in 3T3-L1 adipocytes. This differentiation-dependent loss of STAT6 activation may be critical for distinct biological effects of IL-4 in 3T3-L1 preadipocytes and adipocytes.  相似文献   

    17.
    The isoflavone-derivative genistein is commonly applied as an inhibitor of tyrosine kinases. In this report we analyze the effect of genistein on insulin-stimulated glucose uptake in 3T3-L1 adipocytes. In these cells insulin-induced glucose uptake is primarily mediated by the GLUT4 glucose transporter. We observed that pre-treatment with genistein did not affect insulin-induced tyrosine kinase activity of the insulin receptor or activation of protein kinase B. On the other hand, genistein acted as a direct inhibitor of insulin-induced glucose uptake in 3T3-L1 adipocytes with an IC(50) of 20 microM. We conclude that apart from acting as a general tyrosine kinase inhibitor, genistein also affects the function of other proteins such as the GLUT4 transporter. These data suggest that caution must be applied when interpreting data on the involvement of tyrosine kinase activity in glucose uptake in 3T3-L1 adipocytes.  相似文献   

    18.
    The role of phosphatidylinositol (PI) 3-kinase in specific aspects of insulin signaling was explored in 3T3-L1 adipocytes. Inhibition of PI 3-kinase activity by LY294002 or wortmannin significantly enhanced basal and insulin-stimulated GTPase-activating protein (GAP) activity in 3T3-L1 adipocytes. Furthermore, removal of the inhibitory influence of PI 3-kinase on GAP resulted in dose-dependent decreases in the ability of insulin to stimulate p21ras. This effect was specific to adipocytes, as inhibition of PI 3-kinase did not influence GAP in either 3T3-L1 fibroblasts, Rat-1 fibroblasts, or CHO cells. Immunodepletion of either of the two subunits of the PI 3-kinase (p85 or p110) yielded similar activation of GAP, suggesting that catalytic activity of p110 plays an important role in controlling GAP activity in 3T3-L1 adipocytes. Inhibition of PI 3-kinase activity in 3T3-L1 adipocytes resulted in abrogation of insulin-stimulated glucose uptake and thymidine incorporation. In contrast, effects of insulin on glycogen synthase and mitogen-activated protein kinase activity were inhibited only at higher concentrations of LY294002. It appears that in adipocytes, P1 3-kinase prevents activation of GAP. Inhibition of PI 3-kinase activity or immunodepletion of either one of its subunits results in activation of GAP and decreases in GTP loading of p21ras.  相似文献   

    19.
    We have recently identified the winged helix/forkhead gene Foxc2 as a key regulator of adipocyte metabolism that counteracts obesity and diet-induced insulin resistance. This study was performed to elucidate the hormonal regulation of Foxc2 in adipocytes. We find that TNF alpha and insulin induce Foxc2 mRNA in differentiated 3T3-L1 cells with the kinetics of an immediate early response (1-2 h with 100 ng/ml insulin or 5 ng/ml TNF alpha). This induction is, in both cases, attenuated by the PI3K inhibitor wortmannin as well as the MAPK kinase inhibitor PD98059. Furthermore, we show that stimulation of 3T3-L1 adipocytes with phorbol-12-myristate-13-acetate or 8-(4-chlorophenyl)thio-cAMP induces the expression of Foxc2. Interestingly, we find that the basal level of Foxc2 mRNA is down-regulated whereas hormonal responsiveness increases during differentiation of 3T3-L1 from preadipocytes to adipocytes. At the protein level, immunoblots with Foxc2 antibody demonstrated an induction of Foxc2 by insulin and TNF alpha in nuclear extracts of 3T3-L1 adipocytes. EMSA of nuclear proteins from phorbol-12-myristate-13-acetate- and TNF alpha-treated 3T3-L1 adipocytes using a forkhead consensus oligonucleotide revealed specific binding of a Foxc2/DNA complex. In conclusion, our data suggest that insulin and TNF alpha regulate the expression of Foxc2 via a PI3K- and ERK 1/2-dependent pathway in 3T3-L1 adipocytes. Also, signaling pathways downstream of PKA and PKC induce the expression of Foxc2 mRNA.  相似文献   

    20.
    Visfatin expression is elevated in normal human pregnancy   总被引:4,自引:0,他引:4  
    Morgan SA  Bringolf JB  Seidel ER 《Peptides》2008,29(8):1382-1389
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号