首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of extracellular xylanase from Bacillus sp. GRE7 using a bench-top bioreactor and solid-state fermentation (SSF) was attempted. SSF using wheat bran as substrate and submerged cultivation using oat-spelt xylan as substrate resulted in an enzyme productivity of 3,950 IU g−1 bran and 180 IU ml−1, respectively. The purified enzyme had an apparent molecular weight of 42 kDa and showed optimum activity at 70°C and pH 7. The enzyme was stable at 60–80°C at pH 7 and pH 5–11 at 37°C. Metal ions Mn2+ and Co2+ increased activity by twofold, while Cu2+ and Fe2+ reduced activity by fivefold as compared to the control. At 60°C and pH 6, the K m for oat-spelt xylan was 2.23 mg ml−1 and V max was 296.8 IU mg−1 protein. In the enzymatic prebleaching of eucalyptus Kraft pulp, the release of chromophores, formation of reducing sugars and brightness was higher while the Kappa number was lower than the control with increased enzyme dosage at 30% reduction of the original chlorine dioxide usage. The thermostability, alkali-tolerance, negligible presence of cellulolytic activity, ability to improve brightness and capacity to reduce chlorine dioxide usage demonstrates the high potential of the enzyme for application in the biobleaching of Kraft pulp.  相似文献   

2.
An alkalophilic Streptomyces sp. RCK-SC, which produced a thermostable alkaline pectinase, was isolated from soil samples. Pectinase production at 45 °C in shaking conditions (200 rev min−1) was optimal (76,000 IU l−1) when a combination of glucose (0.25% w/v) and citrus pectin (0.25% w/v) was added along with urea (0.25% w/v) in the basal medium devoid of yeast extract and peptone. All the tested amino acids and vitamins greatly induced pectinase production and increased the specific productivity of pectinase up to 550%. In an immobilized cell system containing polyurethane foam (PUF), the pectinase production was enhanced by 32% (101,000 IU l−1) compared to shake flask cultures. In solid-state cultivation (SSC) conditions, using wheat bran as solid substrate, pectinase yield of 4857 IU g−1 dry substrate was obtained at substrate-to-moisture ratio of 1:5 after 72 h of incubation. The partially purified pectinase was optimally active at 60 °C and retained 80% of its activity at 50 °C after 2 h of incubation. The half life of pectinase was 3 h at 70 °C. Pectinase was stable at alkaline pH ranging from 6.0 to 9.0 for more than 8 h at room temperature retaining more than 50% of its activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
A new strain of Penicillium sp. ZH-30 that produces xylanase was isolated from soil. According to the morphology and comparison of internal transcribed spacer (ITS) rDNA gene sequence, the strain Penicillium sp. ZH-30 was identified as a strain of Penicillium oxalicum. When xylan or wheat bran was used as substrate at 30°C for 3 days under submerged cultivation, xylanase production was 5.3 and 13.3 U ml−1, respectively. The temperature and pH for optimum activity were 50°C and 5.0–6.0, respectively.  相似文献   

4.
Simultaneous production of xylanase and pectinase by Bacillus pumilus AJK under submerged fermentation was investigated in this study. Under optimized conditions, it produced 315?±?16 IU/mL acidic xylanase, 290?±?20 IU/mL alkaline xylanase, and 88?±?9 IU/mL pectinase. The production of xylano-pectinolytic enzymes was the highest after inoculating media (containing 2% each of wheat bran and Citrus limetta peel, 0.5% peptone, 10?mM MgSO4, pH 7.0) with 2% of 21-hr-old culture and incubated at 37°C for 60?hr at 200?rpm. Xylanase retained 100% activity from pH 6.0 to10.0 after 3?hr of incubation, while pectinase showed 100% stability from pH 6.0 to 9.0 even after 6?hr of incubation. Cost-effective and concurrent production of xylanase and pectinase by a bacterial isolate in the same production media suggests its potential for various biotechnological applications. This is the first report of simultaneous production of industrially important extracellular xylano-pectinolytic enzymes by B. pumilus.  相似文献   

5.
A very high level of alkalophilic and thermostable pectinase and xylanase has been produced from newly isolated strains of Bacillus subtilis and Bacillus pumilus respectively. Enzyme production for pectinase was carried out under SSF using combinations of cheap agricultural residues while xylanase was produced under submerged fermentation using wheat bran as substrate to minimize the cost of production of these enzymes Among the various substrates tested, the highest yield of pectinase production was observed by using combination of WB + CW (6592 U/g of dry substrate) supplemented with 4% yeast extract when incubated at 37 °C for 72 h using deionized water of pH 7.0 as moistening agent. The biobleaching effect of these cellulase free enzymes on kraft pulp was determined. Both xylanase and pectinase showed stability over a broad range of pH from 6 to 10 and temperature from 55 to 70 °C. The bleaching efficiency of the pectinase and xylanase on kraft pulp was maximum after 150 min at 60 °C using enzyme dosage of 5 IU/ml of each enzyme at 10% pulp consistency with about 16% reduction in kappa number and 84% reduction in permanganate number. Enzyme treated pulp when subjected to CDED1D2 steps, 25% reduction in chlorine consumption and upto 19% reduction in consumption of chlorine dioxide was observed for obtaining the same %ISO brightness. Also an increase of 22 and 84% in whiteness and fluorescence respectively and a decrease of approximately 19% in the yellowness of the biotreated pulp were observed by pretreatment of the pulp with our enzymatic mixture.  相似文献   

6.
The effect of cell density on xylanolytic activity and productivity of Cellulomonas flavigena was evaluated under two different culturing conditions: fed-batch culture with discontinuous feed of sugar cane bagasse (SCB; condition 1) and glycerol fed-batch culture followed by addition of SBC as xylanases inducer (condition 2). The enzymatic profile of xylanases was similar in both systems, regardless of the initial cell density at time of induction. However, the xylanolytic activity changed with initial cell density at the time of induction (condition 2). The maximum volumetric xylanase activity increased with increased initial cell density from 4 to 34 g l−1 but decreased above this value. The largest total volumetric xylanase productivity under condition 2 (1.3 IU ml−1 h−1) was significantly greater compared to condition 1 (maximum 0.6 IU ml−1 h−1). Consequently, induction of xylanase activity by SCB after growing of C. flavigena on glycerol at intermediate cell density can be a feasible alternative to improve activity and productivity of xylanolytic enzymes.  相似文献   

7.
The effect of polysaccharidases (κ-carrageenase, β-agarase, xylanase, cellulase) on the protein extraction from three rhodophytes has been studied. The kinetic parameters (apparent V m, apparent K m) and the optimum activity conditions (pH, temperature) of each enzyme were determined by using pure substrates. All the tested enzymes possess Michaelis Menten mechanism with estimated substrate saturating concentrations of 8 000 mg l−1(carrageenan) for κ-carrageenase, 8 000 mg l−1 (agar) for β-agarase, 5000 mg l−1 (xylane) for β-xylanase and 6 000 mg l−1 (carboxymethylcellulose) for cellulase. The optimum activity conditions are pH 6.5–6.8 at 45°C for carrageenase, pH 6–6.5 at 55°C for agarase, pH 5 at 55°C for xylanase and pH 3.8 at 50°C for cellulose. Different alga/enzymes couples (κ-carrageenase/Chondrus crispus, β-agarase/Gracilaria verrucosa, β-xylanase/Palmaria palmata) were tested under the optimum activity conditions. Alga/cellulase + specific enzyme (e.g. Chondrus crispus/carrageenase + cellulase) systems were also studied at the optimum activity conditions of a specific enzyme (e.g. carageenase). The use of the only cellulose was also tested on each alga. Except for Palmaria palmata, the highest protein yields were observed with the procedures using cellulase coupled with carrageenase or agarase for an incubation period limited to 2 h. The Chondrus crispus/carrageenase + cellulose and Gracilaria verrucosa/agarase + cellulase systems gave ten-fold and three-fold improvements, respectively, in protein extraction yield as compared to the enzyme-free blank procedure. The combined action of xylanase and cellulose on protein extraction from Palmaria palmata does not significantly improve protein yield. The best overall protein yield for P. palmata is for P. palmata/xylanase with a 14-h incubation time. This study shows the interest in the use of a polysaccharidase mixture for improving protein extractibility from certain rhodophytes. This biotechnology approach, adapted from procedures for protoplast production or enzymatic liquefaction of higher plants, could be tested as an alternative method to obtain proteins from seaweeds of nutritional interest.  相似文献   

8.
A complete gene, xyl10C, encoding a thermophilic endo-1,4-β-xylanase (XYL10C), was cloned from the acidophilic fungus Bispora sp. MEY-1 and expressed in Pichia pastoris. XYL10C shares highest nucleotide and amino acid sequence identities of 57.3 and 49.7%, respectively, with a putative xylanase from Aspergillus fumigatus Af293 of glycoside hydrolase family 10. A high expression level in P. pastoris (73,400 U ml−1) was achieved in a 3.7–l fermenter. The purified recombinant XYL10C was thermophilic, exhibiting maximum activity at 85°C, which is higher than that reported from any fungal xylanase. The enzyme was also highly thermostable, exhibiting ~100% of the initial activity after incubation at 80°C for 60 min and >87% of activity at 90°C for 10 min. The half lives of XYL10C at 80 and 85°C were approximately 45 and 3 h, respectively. It had two activity peaks at pH 3.0 and 4.5–5.0 (maximum), respectively, and was very acid stable, retaining more than 80% activity after incubation at pH 1.5−6.0 for 1 h. The enzyme was resistant to Co2+, Mn2+, Cr3+ and Ag+. The specific activity of XYL10C for oat spelt xylan was 18,831 U mg−1. It also had wide substrate specificity and produced simple products (65.1% xylose, 25.0% xylobiose and 9.9% xylan polymer) from oat spelt xylan.  相似文献   

9.
Xylanase production by the Antarctic psychrophilic yeast Cryptococcus adeliae was increased 4.3 fold by optimizing the culture medium composition using statistical designs. The optimized medium containing 24.2 g l−1 xylan and 10.2 g l−1 yeast extract and having an initial pH of 7.5 yielded xylanase activity at 400 nkat (nanokatal) ml−1 after 168-h shake culture at 4°C. In addition, very little endoglucanase, β-mannanase, β-xylosidase, β-glucosidase, α-l-arabinofuranosidase, and no filter paper cellulase activities were detected. Among 12 carbon sources tested, maximum xylanase activity was induced by xylan, followed by lignocelluloses such as steamed wheat straw and alkali-treated bagasse. The level of enzyme activity produced on other carbon sources appeared to be constitutive. Among the complex organic nitrogen sources tested, the xylanase activity was most enhanced by yeast extract, followed by soymeal, Pharmamedia (cotton seed protein), and Alburex (potato protein). A batch culture at 10°C in a 5-l fermenter (3.5-1 working volume) using the optimized medium gave 385 nkat at 111 h of cultivation. The crude xylanase showed optimal activity at pH 5.0–5.5 and good stability at pH 4–9 (21 h at 4°C). Although the enzyme was maximally active at 45°–50°C, it appeared very thermolabile, showing a half-life of 78 min at 35°C. At 40°–50°C, it lost 71%–95% activity within 5 min. This is the first report on the production as well as on the properties of thermolabile xylanase produced by an Antarctic yeast. Received: December 10, 1999 / Accepted: March 23, 2000  相似文献   

10.
This paper reports the production of a cellulase-free and alkali-stable xylanase in high titre from a newly isolated Bacillus pumilus SV-85S using cheap and easily available agro-residue wheat bran. Optimization of fermentation conditions enhanced the enzyme production to 2995.20 ± 200.00 IU/ml, which was 9.91-fold higher than the activity under unoptimized basal medium (302.2 IU/ml). Statistical optimization using response-surface methodology was employed to obtain a cumulative effect of peptone, yeast extract, and potassium nitrate (KNO3) on enzyme production. A 23 central composite design best optimized the nitrogen source at the 0 level for peptone and yeast extract and at the −α level for KNO3, along with 5.38-fold increase in xylanase activity. Addition of 0.1% tween 80 to the medium increased production by 1.5-fold. Optimum pH for xylanase was 6.0. The enzyme was 100% stable over the pH range from 5 to 11 for 1 h at 37°C and it lost no activity, even after 3 h of incubation at pH 7, 8, and 9. Optimum temperature for the enzyme was 50°C, but the enzyme displayed 78% residual activity even at 65°C. The enzyme retained 50% activity after an incubation of 1 h at 60°C. Characteristics of B. pumilus SV-85S xylanase, including its cellulase-free nature, stability in alkali over a long duration, along with high-level production, are particularly suited to the paper and pulp industry.  相似文献   

11.
Xylanases produced from a locally isolated strain of Thermomyces lanuginosus and its mutant derivative were purified to a yield of 39.1 and 42.83% with specific activities of 15,501 and 17,778 IU mg−1 protein, respectively. The purification consisted of two steps i.e., ammonium sulphate precipitation, and gel filtration chromatography. The mutant enzyme showed high affinity for substrate, with a K m of 0.098 mg ml−1 as compared to wild type enzyme showing K m of not less than 0.112 mg ml−1. It was found that pH values of 8.1 and 7.3 were best for activity of the mutant and wild-type-derived enzymes, respectively. The values of pK a of the acidic limbs of both enzymes were the same (5.0 and 4.9, respectively) but the pK a value of the basic limb was slightly increased, indicating the participation of a carboxyl group present in a non-polar environment. Temperatures of 70 and 65°C were found optimal for mutant and wild-derived xylanase, respectively. Enzymes displayed a high thermostability showing a half life of 31.79 and 6.0 min (5.3-fold improvement), enthalpy of denaturation (ΔH*) of 146.06 and 166.95 kJ mol−1, entropy of denaturation (ΔS*) of 101.44 and 174.67, and free energy of denaturation (ΔG*) of 110.25 and 105.29 kJ mol−1 for mutant- and wild-organism derived enzyme, respectively at 80°C. Studies on the folding and stability of cellulase-less xylanases are important, since their biotechnological employments require them to function under extreme conditions of pH and temperature. The kinetic and thermodynamic properties suggested that the xylanase from the mutant organism is better as compared to xylanase produced from the wild type and previously reported strains of same species, and may have a potential usage in various industrial fields.  相似文献   

12.
Solid-state fermentation obtained from different and low-cost carbon sources was evaluated to endocellulases and endoxylanases production by Aspergillus japonicus C03. Regarding the enzymatic production the highest levels were observed at 30 °C, using soy bran added to crushed corncob or wheat bran added to sugarcane bagasse, humidified with salt solutions, and incubated for 3 days (xylanase) or 6 days (cellulase) with 70% relative humidity. Peptone improved the xylanase and cellulase activities in 12 and 29%, respectively. The optimum temperature corresponded to 60 °C and 50–55 °C for xylanase and cellulase, respectively, both having 4.0 as optimum pH. Xylanase was fully stable up to 40 °C, which is close to the rumen temperature. The enzymes were stable in pH 4.0–7.0. Cu++ and Mn++ increased xylanase and cellulase activities by 10 and 64%, respectively. A. japonicus C03 xylanase was greatly stable in goat rumen fluid for 4 h during in vivo and in vitro experiments.  相似文献   

13.
Two endoglucanases were purified to electrophoretic homogeneity from the culture filtrate of a mutant strain Trichoderma sp. M7. EG-III and EG-IV had Mr of 49.7 and 47.5 kDa, and estimated pi values of 3.7 and 6.35, respectively. The optimal pH and temperature values were determined to be pH 5.0 and 60°C for the first cellulase, whereas pH 5.2 and 50 °C were optimal for the other. Endoglucanases exhibited typical Michaelis-Menten kinetics with K m and V values of 2.9 mg ml−1 and 60498.5 μmol min−1 mg−1 for EG-III and 3.8 mg ml−1 and 22650.9 μmol min−1 mg−1 for EG-IV, respectively. Mn2+, Cu2+ and Pd2+ strongly inhibited the enzymes. EC-IV catalyzed the hydrolysis of Na-CMC and hydroxyethyl cellulose (HEC) only, whereas EG-III displayed high activity towards xylans, also. Different preferences towards cellulosic substrates and their regions define a different role of the investigated enzymes in the degradation of plant biomass. Published in Russian in Prikladnaya Biokhimiya i Mikrobiologiya, 2009, Vol. 45, No. 2, pp. 171–175. The article is published in the original.  相似文献   

14.
A metagenomic library containing ca. 3.06 × 108 bp insert DNA was constructed from a rice straw degrading enrichment culture. A xylanase gene, umxyn10A, was cloned by screening the library for xylanase activity. The encoded enzyme Umxyn10A showed 58% identity and 73% similarity with a xylanase from Thermobifida fusca YX. Sequence analyses showed that Umxyn10A contained a glycosyl hydrolase family 10 catalytic domain. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified and characterized biochemically. Recombinant Umxyn10A was highly active toward xylan. However, the purified enzyme could slightly hydrolyze β-1,3/4-glucan and β-1,3/6-glucan. Umxyn10A displayed maximal activity toward oat spelt xylan at a high temperature (75°C) and weak acidity (pH 6.5). The K m and V max of Umxyn10A toward oat spelt xylan were 3.2 mg ml−1 and 0.22 mmol min−1 mg−1 and were 2.7 mg ml−1 and 1.0 mmol min−1 mg−1 against birchwood xylan, respectively. Metal ions did not appear to be required for the catalytic activity of this enzyme. The enzyme Umxyn10A could efficiently hydrolyze birchwood xylan to release xylobiose as the major product and a negligible amount of xylose. The xylanase identified in this work may have potential application in producing xylobiose from xylan.  相似文献   

15.
Purified uricase from a caprine kidney, possessed K m and V max values of 1.1 mg ml−1 and 3512 IU (mg protein)−1 for uric acid hydrolysis, respectively. The optimum temperature and pH for catalytic activity were 40 °C and 8.5, respectively. The activation energy for formation of ES complex was 13.6 kJ mol−1. Enthalpy (ΔH*), entropy of activation (ΔS*) and Gibbs free energy demand of uricase inactivation were 62.8 kJ mol−1, −102 J mol−1 K−1 and 104.3 kJ mol−1, respectively. Gibbs free enrgy demand for substrate binding and transition state stabilization were also determined which were comparable with those for themostable enzymes.  相似文献   

16.
We cloned and sequenced a xylanase gene named xylD from the acidophilic fungus Bispora sp. MEY-1 and expressed the gene in Pichia pastoris. The 1,422-bp full-length complementary DNA fragment encoded a 457-amino acid xylanase with a calculated molecular mass of 49.8 kDa. The mature protein of XYLD showed high sequence similarity to both glycosyl hydrolase (GH) families 5 and 30 but was more homologous to members of GH 30 based on phylogenetic analysis. XYLD shared the highest identity (49.9%) with a putative endo-1,6-β-d-glucanase from Talaromyces stipitatus and exhibited 21.1% identity and 34.3% similarity to the well-characterized GH family 5 xylanase from Erwinia chrysanthemi. Purified recombinant XYLD showed maximal activity at pH 3.0 and 60 °C, maintained more than 60% of maximal activity when assayed at pH 1.5–4.0, and had good thermal stability at 60 °C and remained stable at pH 1.0–6.0. The enzyme activity was enhanced in the presence of Ni2+ and β-mercaptoethanol and inhibited by some metal irons (Hg2+, Cu2+, Pb2+, Mn2+, Li+, and Fe3+) and sodium dodecyl sulfate. The specific activity of XYLD for beechwood xylan, birchwood xylan, 4-O-methyl-d-glucuronoxylan, and oat spelt xylan was 2,463, 2,144, 2,020, and 1,429 U mg−1, respectively. The apparent K m and V max values for beechwood xylan were 5.6 mg ml−1 and 3,622 μmol min−1 mg−1, respectively. The hydrolysis products of different xylans were mainly xylose and xylobiose.  相似文献   

17.
A newly isolated Geobacillus sp. IIPTN (MTCC 5319) from the hot spring of Uttarakhand's Himalayan region produced a hyperthermostable α-amylase. The microorganism was characterized by biochemical tests and 16S rRNA gene sequencing. The optimal temperature and pH were 60°C and 6.5, respectively, for growth and enzyme production. Although it was able to grow in temperature ranges from 50 to 80°C and pH 5.5–8.5. Maximum enzyme production was in exponential phase with activity 135 U ml−1 at 60°C. Assayed with cassava as substrate, the enzyme displayed optimal activity 192 U ml−1 at pH 5.0 and 80°C. The enzyme was purified to homogeneity with purification fold 82 and specific activity 1,200 U mg−1 protein. The molecular mass of the purified enzyme was 97 KDa. The values of K m and V max were 36 mg ml−1 and 222 μmol mg−1 protein min−1, respectively. The amylase was stable over a broad range of temperature from 40°C to 120°C and pH ranges from 5 to 10. The enzyme was stimulated with Mn2+, whereas it was inhibited by Hg2+, Cu2+, Zn2+, Mg2+, and EDTA, suggesting that it is a metalloenzyme. Besides hyperthermostability, the novelty of this enzyme is resistance against protease.  相似文献   

18.
This study presents data on the production, purification, and properties of a thermostable β-xylanase produced by an Aspergillus awamori 2B.361 U2/1 submerged culture using wheat bran as carbon source. Fractionation of the culture filtrate by membrane ultrafiltration followed by Sephacryl S-200 and Q-Sepharose chromatography allowed for the isolation of a homogeneous xylanase (PXII-1), which was 32.87 kDa according to MS analysis. The enzyme-specific activity towards soluble oat spelt xylan, which was found to be 490 IU/mg under optimum reaction conditions (50°C and pH 5.0–5.5), was 17-fold higher than that measured in the culture supernatant. Xylan reaction products were identified as xylobiose, xylotriose, and xylotetraose. K m values (mg ml−1) for soluble oat spelt and birchwood xylan were 11.8 and 9.45, respectively. Although PXII-1 showed 85% activity retention upon incubation at 50°C and pH 5.0 for 20 days, incubation at pH 7.0 resulted in 50% activity loss within 3 days. PXII-1 stability at pH 7.0 was improved in the presence of 20 mM cysteine, which allowed for 85% activity retention for 25 days. This study on the production in high yields of a remarkably thermostable xylanase is of significance due to the central role that this class of biocatalyst shares, along with cellulases, for the much needed enzymatic hydrolysis of biomass. Furthermore, stable xylanases are important for the manufacture of paper, animal feed, and xylooligosaccharides.  相似文献   

19.
Melanocarpus albomyces, a thermophilic fungus isolated from compost by enrichment culture in a liquid medium containing sugarcane bagasse, produced cellulase-free xylanase in culture medium. The fungus was unusual in that xylanase activity was inducible not only by hemicellulosic material but also by the monomeric pentosan unit of xylan but not by glucose. Concentration of bagasse-grown culture filtrate protein followed by size-exclusion and anion-exchange chromatography separated four xylanase activities. Under identical conditions of protein purification, xylanase I was absent in the xylose-grown culture filtrate. Two xylanase activities, a minor xylanase IA and a major xylanase IIIA, were purified to apparent homogeneity from bagasse-grown cultures. Both xylanases were specific forβ-1,4 xylose-rich polymer, optimally active, respectively, at pH 6.6 and 5.6, and at 65°C. The xylanases were stable between pH 5 to 10 at 50°C for 24 h. Xylanases released xylobiose, xylotriose and higher oligomers from xylans from different sources. Xylanase IA had a Mr of 38 kDa and contained 7% carbohydrate whereas xylanase IIIA had a Mr of 24 kDa and no detectable carbohydrate. The Km for larchwood xylan (mg ml−1) and Vmax (μmol xylose min−1 mg−1 protein) of xylanase IA were 0.33 and 311, and of xylanase IIIA 1.69 and 500, respectively. Xylanases IA, II and IIIA showed no synergism in the hydrolysis of larchwood glucuronoxylan or oat spelt and sugarcane bagasse arabinoxylans. They had different reactivity on untreated and delignified bagasse. The xylanases were more reactive than cellulase on delignified bagasse. Simultaneous treatment of delignified bagasse by xylanase and cellulase released more sugar than individual enzyme treatments. By contrast, the primary cell walls of a plant, particularly from the region of elongation, were more susceptible to the action of cellulase than xylanase. The effects of xylanase and cellulase on plant cell walls were consistent with the view that hemicellulose surrounds cellulose in plant cell walls.  相似文献   

20.
By constructing a genomic library, a new gene encoding β-glucosidase (Bgl1C) was cloned from Exiguobacterium oxidotolerans A011, which was isolated from deep sea mud. The putative β-glucosidase gene consisted of an open reading frame (ORF) of 1,347 nucleotides, and encoded a protein of 448 amino acids with a predicted molecular weight of 51.6 kDa. Bgl1C belonged to the glycoside hydrolase family 1, and the deduced amino acid sequence displayed the highest identity (68%) to the β-glucosidase from Bacillus coahuilensis m4-4. Optimal conditions for activity were pH 7 and a temperature of 35°C and Bgl1C was stable in buffers ranging from pH 6.6 to 9. The specific activity, K m, and V max for the substrate p-nitrophenyl-β-d-glucopyranoside were 41 U mg−1, 1.72 mg ml−1 and 0.45 μg ml−1 s−1, respectively. Na+, Ca2+, EDTA and β-mercaptoethanol had no effect on the activity, while Hg2+, Cu2+, Co2+ strongly inhibited it. It is noteworthy that Bgl1C is a cold active enzyme that retains about 61% of its maximum activity at 10°C. Structural model of Bgl1C revealed that some amino acids (glycine, alanine, serine, valine) concerned with plasticity and flexibility were located around the active sites, this may contributed to the cold adaption of Bgl1C. These favorable features make Bgl1C a potential candidate for various industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号