首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the δ-ornithine amino transferase (OAT) pathway in proline synthesis is still controversial and was assessed in leaves of cashew plants subjected to salinity. The activities of enzymes and the concentrations of metabolites involved in proline synthesis were examined in parallel with the capacity of exogenous ornithine and glutamate to induce proline accumulation. Proline accumulation was best correlated with OAT activity, which increased 4-fold and was paralleled by NADH oxidation coupled to the activities of OAT and Δ1-pyrroline-5-carboxylate reductase (P5CR), demonstrating the potential of proline synthesis via OAT/P5C. Overall, the activities of GS, GOGAT and aminating GDH remained practically unchanged under salinity. The activity of P5CR did not respond to NaCl whereas Δ1-pyrroline-5-carboxylate dehydrogenase was sharply repressed by salinity. We suggest that if the export of P5C from the mitochondria to the cytosol is possible, its subsequent conversion to proline by P5CR may be important. In a time-course experiment, proline accumulation was associated with disturbances in amino acid metabolism as indicated by large increases in the concentrations of ammonia, free amino acids, glutamine, arginine and ornithine. Conversely, glutamate concentrations increased moderately and only within the first 24 h. Exogenous feeding of ornithine as a precursor was very effective in inducing proline accumulation in intact plants and leaf discs, in which proline concentrations were several times higher than glutamate-fed or salt-treated plants. Our data suggest that proline accumulation might be a consequence of salt-induced increase in N recycling, resulting in increased levels of ornithine and other metabolites involved with proline synthesis and OAT activity. Under these metabolic circumstances the OAT pathway might contribute significantly to proline accumulation in salt-stressed cashew leaves.  相似文献   

2.
3.
Accumulation of high quantities of urea in fruiting bodies is a known feature of larger basidiomycetes. Argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) are two ornithine cycle enzymes catalysing the last two steps in the arginine biosynthetic pathway. Arginine is the main precursor for urea formation. In this work the nucleotide sequences of the genes and corresponding cDNAs encoding argininosuccinate synthetase (ass) and argininosuccinate lyase (asl) from Agaricus bisporus were determined. Eight and six introns were present in the ass and asl gene, respectively. The location of four introns in the asl gene were conserved among vertebrate asl genes. Deduced amino acid sequences, representing the first homobasidiomycete ASS and ASL protein sequences, were analysed and compared with their counterparts in other organisms. The ass ORF encoded for a protein of 425 amino acids with a calculated molecular mass of 47 266 Da. An alignment with ASS proteins from other organisms revealed high similarity with fungal and mammalian ASS proteins, 61–63 % and 51–55 % identity, respectively. The asl open reading frame (ORF) encoded a protein of 464 amino acids with an calculated mass of 52 337 Da and similar to ASS shared the highest similarity with fungal ASL proteins, 59–60 % identity.Northern analyses of ass and asl during fruiting body formation and post-harvest development revealed that expression was significantly up-regulated from developmental stage 3 on for all the tissues studied. The expression reached a maximum at the later stages of fruiting body growth, stages 6 and 7. Both ass and asl genes were up-regulated within 3 h after harvest showing that the induction mechanism is very sensitive to the harvest event and emphasizes the importance of the arginine biosynthetic pathway/ornithine cycle in post-harvest physiology.  相似文献   

4.
We surveyed genome sequences from the basidiomycetous mushroom Coprinopsis cinerea and isolated a cDNA homologous to CMKA, a calmodulin-dependent protein kinase (CaMK) in Aspergillus nidulans. We designated this sequence, encoding 580 amino acids with a molecular weight of 63,987, as CoPK02. CoPK02 possessed twelve subdomains specific to protein kinases and exhibited 43, 35, 40% identity with rat CaMKI, CaMKII, CaMKIV, respectively, and 40% identity with CoPK12, one of the CaMK orthologs in C. cinerea. CoPK02 showed significant autophosphorylation activity and phosphorylated exogenous proteins in the presence of Ca2+/CaM. By the CaM-overlay assay we confirmed that the C-terminal sequence (Trp346-Arg358) was the calmodulin-binding site, and that the binding of Ca2+/CaM to CoPK02 was reduced by the autophosphorylation of CoPK02. Since CoPK02 evolved in a different clade from CoPK12, and showed different gene expression compared to that of CoPK32, which is homologous to mitogen-activated protein kinase-activated protein kinase, CoPK02 and CoPK12 might cooperatively regulate Ca2+-signaling in C. cinerea.  相似文献   

5.
Fruit body initials of Agaricus bisporus contain high levels of urea, which decrease in the following developmental stages until stage 4 (harvest) when urea levels increase again. At storage, the high urea content may affect the quality of the mushroom, i.e. by the formation of ammonia from urea through the action of urease (EC 3.5.1.5). Despite the abundance of urea in the edible mushroom A. bisporus, little is known about its physiological role. The urease gene of A. bisporus and its promoter region were identified and cloned. The coding part of the genomic DNA was interrupted by nine introns as confirmed by cDNA analysis. The first full homobasidiomycete urease protein sequence obtained comprised 838 amino acids (molecular mass 90,694 Da, pI 5.8). An alignment with fungal, plant and bacterial ureases revealed a high conservation. The expression of the urease gene, measured by Northern analyses, was studied both during normal development of fruit bodies and during post-harvest senescence. Expression in normal development was significantly up-regulated in developmental stages 5 and 6. During post-harvest senescence, the expression of urease was mainly observed in the stipe tissue; expression decreased on the first day and remained at a basal level through the remaining sampling period.  相似文献   

6.
7.
The Na+/H+ exchangers (NHEs) catalyze the transport of Na+ in exchange for H+ across membranes in organisms and are required for numerous physiological processes. Here we report the cloning and characterization of a novel human NHEDC1 (Na+/H+ exchanger like domain containing 1) gene, which was mapped to human chromosome 4p24. This cDNA is 1859 bp in length, encoding a putative protein of 515 amino acids. The NHEDC1 proteins are highly conserved in mammals including human, mouse, rat, and Macaca fascicularis. One remarkable characteristic of human NHEDC1 gene is that it is exclusively expressed in the testis by RT-PCR analysis. Western blot analysis showed that the molecular weight of NHEDC1 is about 56 KDa. Guangming Ye and Cong Chen contributed equally to this work.  相似文献   

8.
Grifola frondosa (Maitake mushroom) is an important cultivated mushroom due to its medicinal and nutrient values. In this study, we isolated and characterized a novel partitivirus (named Grifola frondosa partitivirus 1, GfPV1) infecting a standard G. frondosa strain Gf-N2. This virus has a two-segmented dsRNA genome (dsRNA1 and dsRNA2) with nucleotide lengths of 2.3 and 2.2 kbp, respectively. The coding strand of dsRNA1 and dsRNA2 segments carries single open reading frame encoding RNA-dependent RNA polymerase (RdRp) and a coat protein (CP), respectively. BLAST searches and phylogenetic analyses showed that GfPV1 is most closely related to a betapartitivirus, Lentinula edodes partitivirus 1 (RdRp <70% and CP <60% amino acid sequence identities), but the sequence divergence suggests that GfPV1 is classifiable as a new member of the genus Betapartitivirus, family Partitiviridae. The presence of GfPV1 does not affect colony morphology and fruiting body development of G. frondosa. This is the first report investigating the effects of a mycovirus infection on the colony morphology and fruiting body development of G. frondosa. Interestingly, GfPV1 accumulations markedly decreased along with the fruiting body maturation stages, suggesting the inhibition of virus multiplication during sexual phase of the G. frondosa life cycle.  相似文献   

9.
10.
With a homologous gene region we successfully isolated a Na+/H+ antiporter gene from a halophytic plant, Atriplex gmelini, and named it AgNHX1. The isolated cDNA is 2607 bp in length and contains one open reading frame, which comprises 555 amino acid residues with a predicted molecular mass of 61.9 kDa. The amino acid sequence of the AgNHX1 gene showed more than 75% identity with those of the previously isolated NHX1 genes from glycophytes, Arabidopsis thaliana and Oryza sativa. The migration pattern of AgNHX1 was shown to correlate with H+-pyrophosphatase and not with P-type H+-ATPase, suggesting the localization of AgNHX1 in a vacuolar membrane. Induction of the AgNHX1 gene was observed by salt stress at both mRNA and protein levels. The expression of the AgNHX1 gene in the yeast mutant, which lacks the vacuolar-type Na+/H+ antiporter gene (NHX1) and has poor viability under the high-salt conditions, showed partial complementation of the NHX1 functions. These results suggest the important role of the AgNHX1 products for salt tolerance.  相似文献   

11.
We have developed two new continuous coupled assays for ornithine-δ-aminotransferase (OAT) that are more sensitive than previous methods, measure activity in real time, and can be carried out in multiwell plates for convenience and high throughput. The first assay is based on the reduction of Δ1-pyrroline-5-carboxylate (P5C), generated from ornithine by OAT, using human pyrroline 5-carboxylate reductase 1 (PYCR1), which results in the concomitant oxidation of NADH (nicotinamide adenine dinucleotide, reduced form) to NAD+ (nicotinamide adenine dinucleotide, oxidized form). This procedure was found to be three times more sensitive than previous methods and is suitable for the study of small molecules as inhibitors or inactivators of OAT or as a method to determine OAT activity in unknown samples. The second method involves the detection of l-glutamate, produced during the regeneration of the cofactor pyridoxal 5’-phosphate (PLP) of OAT by an unamplified modification of the commercially available Amplex Red l-glutamate detection kit (Life Technologies). This assay is recommended for the determination of the substrate activity of small molecules against OAT; measuring the transformation of l-ornithine at high concentrations by this assay is complicated by the fact that it also acts as a substrate for the l-glutamate oxidase (GluOx) reporter enzyme.  相似文献   

12.
A full-length (LeHT2) and two partial (LeHT1 and LeHT3) cDNA clones, encoding hexose transporters, were isolated from tomato (Lycopersicon esculentum) fruit and flower cDNA libraries. Southern blot analysis confirmed the presence of a gene family of hexose transporters in tomato consisting of at least three members. The full-length cDNA (LeHT2) encodes a protein of 523 amino acids, with a calculated molecular mass of 57.6 kDa. The predicted protein has 12 putative membrane-spanning domains and belongs to the Major Facilitator Superfamily of membrane carriers. The three clones encode polypeptides that are homologous to other plant monosaccharide transporters and contain conserved amino acid motifs characteristic of this superfamily. Expression of the three genes in different organs of tomato was investigated by quantitative PCR. LeHT1 and LeHT3 are expressed predominantly in sink tissues, with both genes showing highest expression in young fruit and root tips. LeHT2 is expressed at relatively high levels in source leaves and certain sink tissues such as flowers. LeHT2 was functionally expressed in a hexose transport-deficient mutant (RE700A) of Saccharomyces cerevisiae. LeHT2-dependent transport of glucose in RE700A exhibited properties consistent with the operation of an energy-coupled transporter and probably a H+/hexose symporter. The K m of the symporter for glucose is 45 M.  相似文献   

13.
We isolated and characterized the genomic and complementary DNAs encoding a chitin synthase from an edible basidiomycetous mushroom, Lentinula edodes. The gene (which we designated Lechs1) contains a large open reading frame encoding a polypeptide of 1937 amino acid residues. The open reading frame is interrupted by 14 small introns (49–116 bp). The gene product (LeChs1) consists of a myosin motor-like domain in its N-terminal half and a chitin synthase domain in its C-terminal half, analogous to the class V and VI chitin synthases of other filamentous fungi. Phylogenetic analysis demonstrated that LeChs1 is classified into class VI chitin synthases. Southern blot analysis indicated that Lechs1 is a single-copy gene per haploid genome and that L. edodes has no other highly homologous chitin synthase genes. Northern blot analysis revealed that Lechs1 is expressed throughout the whole stages of fruit-body formation of L. edodes, but its expression level gradually declines in a fruit body-maturation-dependent manner with highest expression in vegetative mycelia and fruit body at the early stage of maturation (immature fruit body). This is the first report on the isolation and characterization of the gene encoding a chitin synthase with a myosin motor-like domain from basidiomycetes.  相似文献   

14.
The cDNA encoding ornithine aminotransferase (EC 2.6.1.13; OAT) was isolated from a human kidney cDNA library. The isolated cDNA contained the entire protein coding region and partial 3'- and 5'-untranslated regions. The nucleotide sequences of human kidney OAT cDNA were absolutely homologous with those of human liver OAT cDNA, and human kidney and liver OAT fused completely against the antibody to human kidney OAT in an Ouchterlony double diffusion test. These findings settled the controversy as to which characteristics of liver and kidney OAT isozymes are different. An N-terminal sequence analysis of purified mature human kidney OAT clarified that the leader peptide was cleaved between Gln-35 and Gly-36.  相似文献   

15.
An Arabidopsis thaliana cDNA library was used to complement Saccharomyces cerevisiae pyrimidine auxotrophic mutants. Mutants in all but one (carbamylphosphate synthetase) of the six steps in the de novo pyrimidine biosynthetic pathway could be complemented. We report here the cloning, sequencing and computer analysis of two cDNAs encoding the aspartate transcarbamylase (ATCase; EC 2.1.3.2) and orotate phosphoribosyltransferase-orotidine-5-phosphate decarboxylase (OPRTase-OMP-decase; EC 2.4.2.10, EC 4.1.1.23) enzymes. These results confirm the presence in A. thaliana of a bifunctional gene whose product catalyses the last two steps of the pyrimidine biosynthetic pathway, as previously suggested by biochemical studies. The ATCase encoding cDNA sequence (PYRB gene) shows an open reading frame (ORF) of 1173 by coding for 390 amino acids. The cDNA encoding OPRTase-OMPdecase (PYRE-F gene) shows an ORF of 1431 by coding for 476 amino acids. Computer analysis of the deduced amino acid sequences of both cDNAs shows the expected high similarity with the ATCase, ornithine transcarbamylase (OTCase; EC 2.1.3.3), OPRTase and OMPdecase families. This heterospecific cloning approach increases our understanding of the genetic organization and interspecific functional conservation of the pyrimidine biosynthetic pathway and underlines its usefulness as a model for evolutionary studies.  相似文献   

16.
Sordaria macrospora is a homothallic ascomycete which is able to form fertile fruiting bodies without a mating partner. To analyze the molecular basis of homothallism and the role of mating products during fruiting body development, we have deleted the mating type gene Smta-1 encoding a high-mobility group domain (HMG) protein. The ΔSmta-1 deletion strain is morphologically wild type during vegetative growth, but it is unable to produce perithecia or ascospores. To identify genes expressed under control of Smta-1, we performed a cross-species microarray analysis using Neurospora crassa cDNA microarrays hybridized with S. macrospora targets. We identified 107 genes that are more than twofold up- or down-regulated in the mutant. Functional classification revealed that 81 genes have homologues with known or putative functions. Comparison of array data from ΔSmta-1 with those from three phenotypically similar mutants revealed that only a limited set of ten genes is deregulated in all mutants. Remarkably, the ppg2 gene encoding a putative lipopeptide pheromone is 500-fold down-regulated in the ΔSmta-1 mutant while in all other sterile mutants this gene is up-regulated. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

17.
Fruiting body development in fungi is a complex cellular differentiation process that is controlled by more than 100 developmental genes. Mutants of the filamentous fungus Sordaria macrospora showing defects in fruiting body formation are pertinent sources for the identification of components of this multicellular differentiation process. Here we show that the sterile mutant pro11 carries a defect in the pro11 gene encoding a multimodular WD40 repeat protein. Complementation analysis indicates that the wild-type gene or C-terminally truncated versions of the wild-type protein are able to restore the fertile phenotype in mutant pro11. PRO11 shows significant homology to several vertebrate WD40 proteins, such as striatin and zinedin, which seem to be involved in Ca2+-dependent signaling in cells of the central nervous system and are supposed to function as scaffolding proteins linking signaling and eukaryotic endocytosis. Cloning of a mouse cDNA encoding striatin allowed functional substitution of the wild-type protein with restoration of fertility in mutant pro11. Our data strongly suggest that an evolutionarily conserved cellular process controlling eukaryotic cell differentiation may regulate fruiting body formation.  相似文献   

18.
In order to isolate and identify the developmentally regulated genes during fruiting body development, cDNA libraries were constructed from eight developmental stages of the Oyster mushroom, Pleurotus ostreatus. From these libraries, 11 761 expressed sequence tags (PoESTs) were generated. Of these, 4060 different genes (PoUnigenes) were identified, representing 34.5% of the entire genome. Redundancy analysis of ESTs during the developmental stages identified eight, 13 and two genes that were specifically expressed in mycelia, fruiting body and basidiospore, respectively. RT-PCR was used to confirm the specific expression of nine genes which showed specific redundancy in fruiting body stages, four genes of which were expressed specifically in fruiting body stages as expected in redundancy analysis, and other genes were expressed abundantly in fruiting body stages. The EST database of P. ostreatus generated during this study provides a genetic and biochemical basis for future studies of the developmental stages of basidiomycetes.  相似文献   

19.
Diacylglycerol kinase (DGK) synthesizes phosphatidic acid from diacylglycerol, an activator of protein kinase C (PKC), to resynthesize phosphatidylinositols. The structure of DGK has not been characterized in plants. We report the cloning of a cDNA, cATDGK1, encoding DGK from Arabidopsis thaliana. The cATDGK1 cDNA contains an open reading frame of 2184 bp, and encodes a putative protein of 728 amino acids with a predicted molecular mass of 79.4 kDa. The deduced ATDGK1 amino acid sequence exhibits significant similarity to that of rat, pig, and Drosophila DGKs. The ATDGK1 mRNA was detected in roots, shoots, and leaves. Southern blot analysis suggests that the ATDGK1 gene is a single-copy gene. The existence of DGK as well as phospholipase C suggests the existence of PKC in plants.  相似文献   

20.
Thirteen cDNA clones encoding IgE-binding proteins were isolated from expression libraries of anthers of Brassica rapa L. and B. napus L. using serum IgE from a patient who was specifically allergic to Brassica pollen. These clones were divided into two groups, I and II, based on the sequence similarity. All the group I cDNAs predicted the same protein of 79 amino acids, while the group II predicted a protein of 83 amino acids with microheterogeneity. Both of the deduced amino acid sequences contained two regions with sequence similarity to Ca2+-binding sites of Ca2+-binding proteins such as calmodulin. However flanking sequences were distinct from that of calmodulin or other Ca2+-binding proteins. RNA-gel blot analysis showed the genes of group I and II were preferentially expressed in anthers at the later developmental stage and in mature pollen. The recombinant proteins produced in Escherichia coli was recognized in immunoblot analysis by the IgE of a Brassica pollen allergic patient, but not by the IgE of a non-allergic patient. The cDNA clones reported here, therefore, represent pollen allergens of Brassica species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号