首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ubiquitously expressed mu- and m-calpain proteases are implicated in development and apoptosis. They consist of 80-kDa catalytic subunits encoded by the capn1 and capn2 genes, respectively, and a common 28-kDa regulatory subunit encoded by the capn4 gene. The regulatory subunit is required to maintain the stability and activity of mu- and m-calpains. Accordingly, genetic disruption of capn4 in the mouse eliminated both ubiquitous calpain activities. In embryonic fibroblasts derived from these mice, calpain deficiency correlated with resistance to endoplasmic reticulum (ER) stress-induced apoptosis, and this was directly related to a calpain requirement for activation of both caspase-12 and the ASK1-JNK cascade. This study provides compelling genetic evidence for calpain's role in caspase-12 activation at the ER, and reveals a novel role for the ubiquitous calpains in ER-stress induced apoptosis and JNK activation.  相似文献   

2.
The absence of both mu- and m-calpain activity, caused by disruption of the capn4 gene in mice, retarded migration, and disrupted the cytoskeleton, both in primary capn4(-/-) embryonic fibroblasts (mEF) and in capn4(-/-) mEF immortalized with SV40 large T-antigen (TAg). These results are thought to reflect the role of calpain in integrin signaling to the cytoskeleton. The integrins are also involved, together with matrix metalloproteinases (MMP) and plasminogen activators (PA), in cellular invasion. This study therefore aimed to establish whether links exist between the calpain, MMP, and PA systems, using both primary and TAg-immortalized capn4(+/+) and capn4(-/-) embryonic fibroblasts. Both Matrigel invasion, and expression of MMP-2 and u-PA activities, correlated with calpain expression in TAg-containing cells, but not in primary cells. MMP-2 mRNA synthesis also correlated with calpain expression in the presence of TAg, but u-PA mRNA synthesis was not so correlated. The results suggest that calpain acquires new regulatory roles in the presence of TAg. Calpain is also required for v-Src-mediated transformation. It appears that calpain may have previously unsuspected roles in oncogenic transformation.  相似文献   

3.
Calpains are a family of Ca(2+)-dependent intracellular cysteine proteases, including the ubiquitously expressed micro- and m-calpains. Both mu- and m-calpains are heterodimers, consisting of a distinct large 80-kDa catalytic subunit, encoded by the genes Capn1 and Capn2, and a common small 28-kDa regulatory subunit (Capn4). The physiological roles and possible functional distinctions of mu- and m-calpains remain unclear, but suggested functions include participation in cell division and migration, integrin-mediated signal transduction, apoptosis, and regulation of cellular control proteins such as cyclin D1 and p53. Homozygous disruption of murine Capn4 eliminated both mu- and m-calpain activities, but this did not affect survival and proliferation of cultured embryonic stem cells or embryonic fibroblasts, or the early stages of organogenesis. However, mutant embryos died at midgestation and displayed defects in the cardiovascular system, hemorrhaging, and accumulation of erythroid progenitors.  相似文献   

4.
The mu- and m-calpain proteases have been implicated in both pro- or anti-apoptotic functions. Here we compared cell death responses and apoptotic or survival signaling pathways in primary mouse embryonic fibroblasts (MEFs) derived from wild type or capn4 knock-out mice which lack both mu- and m-calpain activities. Capn4(-/-) MEFs displayed resistance to puromycin, camptothecin, etoposide, hydrogen peroxide, ultraviolet light, and serum starvation, which was consistent with pro-apoptotic roles for calpain. In contrast, capn4(-/-) MEFs were more susceptible to staurosporine (STS) and tumor necrosis factor alpha-induced cell death, which provided evidence for anti-apoptotic signaling roles for calpain. Bax activation, release of cytochrome c, and activation of caspase-9 and caspase-3 all correlated with the observed cell death responses of wild type or capn4(-/-) MEFs to the various challenges, suggesting that calpain might play distinct roles in transducing different death signals to the mitochondria. There was no evidence that calpain cleaved Bcl-2 family member proteins that regulate mitochondrial membrane permeability including Bcl-2, Bcl-xl, Bad, Bak, Bid, or Bim. However, activation of the phosphatidylinositol 3 (PI3)-kinase/Akt survival signaling pathway was compromised in capn4(-/-) MEFs under all challenges regardless of the cell death outcome, and blocking Akt activation using the PI3-kinase inhibitor LY294002 abolished the protective effect of calpain to STS challenge. We conclude that the anti-apoptotic function of calpain in tumor necrosis factor alpha- and STS-challenged cells relates to a novel role in activating the PI3-kinase/Akt survival pathway.  相似文献   

5.
Binding of calpain fragments to calpastatin   总被引:1,自引:0,他引:1  
Their cDNA-derived amino acid sequences predict that the 80-kDa subunits of the micromolar and millimolar Ca(2+)-requiring forms of the Ca(2+)-dependent proteinase (mu- and m-calpain, respectively) each consist of four domains and that the 28-kDa subunit common to both mu- and m-calpain consists of two domains. The calpains were allowed to autolyze to completion, and the autolysis products were separated and were characterized by using gel permeation chromatography, calpastatin affinity chromatography, and sequence analysis. Three major fragments were obtained after autolysis of either calpain. The largest fragment (34 kDa for mu-calpain, 35 kDa for m-calpain) contains all of domain II, the catalytic domain, plus part of domain I of the 80-kDa subunit of mu- or m-calpain. This fragment does not bind to calpastatin, a competitive inhibitor of the calpains, and has no proteolytic activity in either the absence or presence of Ca2+. The second major fragment (21 kDa for mu-calpain and 22 kDa for m-calpain) contains domain IV, the calmodulin-like domain, plus approximately 50 amino acids from domain III of the 80-kDa subunit of mu- or m-calpain. The third major fragment (18 kDa) contains domain VI, the calmodulin-like domain of the 28-kDa subunit. The second and third major fragments bind to a calpastatin affinity column in the presence of Ca2+ and are eluted with EDTA. The second and third fragments are noncovalently bound, so the 80- and 28-kDa subunits of the intact calpain molecules are noncovalently bound at domains IV and VI. After separation in 1 M NaSCN, the 28-kDa subunit binds completely to calpastatin, approximately 30-40% of the 80-kDa subunit of mu-calpain binds to calpastatin, and the 80-kDa subunit of m-calpain does not bind to calpastatin in the presence of 1 mM Ca2+.  相似文献   

6.
The calpain family of cysteine proteases has a well-established causal role in neuronal cell death following acute brain injury. However, the relative contribution of calpain isoforms to the various forms of injury has not been determined as available calpain inhibitors are not isoform-specific. In this study, we evaluated the relative role of m-calpain and μ-calpain in a primary hippocampal neuron model of NMDA-mediated excitotoxicity. Baseline mRNA expression for the catalytic subunit of m-calpain ( capn2 ) was found to be 50-fold higher than for the μ-calpain catalytic subunit ( capn1 ) based on quantitative real-time PCR. Adeno-associated viral vectors designed to deliver short hairpin RNAs targeting capn1 or capn2 resulted in 60% and 90% knockdown of message respectively. Knockdown of capn2 but not capn1 increased neuronal survival after NMDA exposure at 21 days in vitro . Nuclear translocation of calpain substrates apoptosis inducing factor, p35/p25 and collapsin response mediator protein (CRMP) 2–4 was not detected after NMDA exposure in this model. However, nuclear translocation of CRMP-1 was observed and was prevented by capn2 knockdown. These findings provide insight into potential mechanisms of calpain-mediated neurodegeneration and have important implications for the development of isoform-specific calpain inhibitor therapy.  相似文献   

7.
A monoclonal antibody to the small subunit common to both mu- and m-calpains can be used in an immunoaffinity column to purify either mu- or m-calpain in a proteolytically active form. Extracts in 150 mM NaCl, pH 7.5, are loaded onto a column containing the anti-28-kDa antibody; the column is washed with 500 mM NaCl, pH 7.5, and the bound calpain is eluted with 150 mM NaCl, 50 mM Tris-HCl, pH 9.5, and 1 mM EDTA. These elution conditions do not affect the proteolytic activity of either mu- or m-calpain. It is most efficient to reduce the volume and to remove any proteolytic activity from crude extracts by using successive phenyl Sepharose and ion-exchange columns before loading onto the immunoaffinity column. The column purifies m-calpain more effectively than mu-calpain; m-calpain is greater than 90% pure after a single pass through this column, whereas mu-calpain can be purified to >70% purity. The epitope for the monoclonal antibody is between amino acids 92 and 104 (numbers for human calpain) in the 28-kDa subunit. Evidently, this area is shielded in the calpain molecule in a way that affects binding of the antibody to the native molecule.  相似文献   

8.
Ubiquitously expressed micro- and m-calpain proteases consist of 80-kDa catalytic subunits encoded by the Capn1 and Capn2 genes, respectively, and a common 28-kDa regulatory subunit encoded by the calpain small 1 (Capns1) gene. The micro- and m-calpain proteases have been implicated in both pro- or anti-apoptotic functions. We have found that Capns1 depletion is coupled to increased sensitivity to apoptosis triggered by a number of autophagy-inducing stimuli in mammalian cells. Therefore we investigated the involvement of calpains in autophagy using MEFs derived from Capns1 knockout mice and Capns1 depleted human cells as model systems. We found that autophagy is impaired in Capns1-deficient cells by immunostaining of the endogenous autophagosome marker LC3 and electron microscopy experiments. Accordingly, the enhancement of lysosomal activity and long-lived proteins degradation, normally occurring upon starvation, are also reduced. In Capns1-depleted cells ectopic LC3 accumulates in early endosome-like vesicles that might represent a salvage pathway for protein degradation when autophagy is defective.  相似文献   

9.
《Autophagy》2013,9(3):235-237
Ubiquitously expressed mu- and m-calpain proteases consist of 80-kDa catalytic subunits encoded by the Capn1 and Capn2 genes, respectively, and a common 28-kDa regulatory subunit encoded by the calpain small 1 (Capns1) gene.

The mu- and m-calpain proteases have been implicated in both pro- or anti-apoptotic functions. We have found that Capns1 depletion is coupled to increased sensitivity to apoptosis triggered by a number of autophagy-inducing stimuli in mammalian cells. Therefore we investigated the involvement of calpains in autophagy using MEFs derived from Capns1 knockout mice and Capns1 depleted human cells as model systems.

We found that autophagy is impaired in Capns1-deficient cells by immunostaining of the endogenous autophagosome marker LC3 and electron microscopy experiments. Accordingly, the enhancement of lysosomal activity and long-lived proteins degradation, normally occurring upon starvation, are also reduced.

In Capns1-depleted cells ectopic LC3 accumulates in early endosome-like vesicles that might represent a salvage pathway for protein degradation when autophagy is defective.

Addendum to:

Calpain is Required for Macroautophagy in Mammalian Cells

Francesca Demarchi, Cosetta Bertoli, Tamara Copetti, Isei Tanida, Claudio Brancolini, Eeva-Liisa Eskelinen and Claudio Schneider

J Cell Biol 2006; 175:595-605  相似文献   

10.
Proteolytic digestion by trypsin and chymotrypsin was used to probe conformation and domain structure of the mu- and m-calpain molecules in the presence and the absence of Ca(2+). Both calpains have a compact structure in the absence of Ca(2+); incubation with either protease for 120 min results in only three or four major fragments. A 24-kDa fragment was produced by removal of the Gly-rich area in domain V of the 28-kDa subunit. The other fragments were from the 80-kDa subunit. Except for trypsin digestion of m-calpain, the region between amino acids 245 and 265 (human sequence) was very susceptible to cleavage by both proteases in the absence of Ca(2+); this region is in domain II (IIb of the crystallographic structure). Although no proteolytically active fragments could be isolated from either tryptic or chymotryptic digests, the calpain molecule can remain assembled in a proteolytically active complex even after the 80-kDa subunit has been completely degraded. The results suggest that interaction among different regions of the entire calpain molecule is required for its full proteolytic activity. In the presence of 1 mM Ca(2+), both calpains are degraded to fragments less than 40-kDa in less than 5 min. The C-terminal ends of both subunits, from amino acids 503 to 506 to the end of the 80-kDa subunit and from amino acids 85 to 88 to the end of the 28-kDa subunit, were resistant to degradation by either protease in the presence or in the absence of Ca(2+). Hence, this part of the calpain molecule is in a compact structure that does not change significantly in the presence of Ca(2+).  相似文献   

11.
Although the biochemical changes that occur during autolysis of mu- and m-calpain are well characterized, there have been few studies on properties of the autolyzed calpain molecules themselves. The present study shows that both autolyzed mu- and m-calpain lose 50-55% of their proteolytic activity within 5 min during incubation at pH 7.5 in 300 mM or higher salt and at a slower rate in 100 mM salt. This loss of activity is not reversed by dialysis for 18 h against a low-ionic-strength buffer at pH 7.5. Proteolytic activity of the unautolyzed calpains is not affected by incubation for 45 min at ionic strengths up to 1000 mM. Size-exclusion chromatography shows that ionic strengths of 100 mM or above cause dissociation of the two subunits of autolyzed calpains and that the dissociated large subunits (76- or 78-kDa) aggregate to form dimers and trimers, which are proteolytically inactive. Hence, instability of autolyzed calpains is due to aggregation of dissociated heavy chains. Autolysis removes the N-terminal 19 (m-calpain) or 27 (mu-calpain) amino acids from the large subunit and approximately 90 amino acids from the N-terminus of the small subunit. These regions form contacts between the two subunits in unautolyzed calpains, and their removal leaves only contacts between domain IV in the large subunit and domain VI in the small subunit. Although many of these contacts are hydrophobic in nature, ionic-strength-induced dissociation of the two subunits in the autolyzed calpains indicates that salt bridges have an important, possibly indirect, role in the domain IV/domain VI interaction.  相似文献   

12.

Background  

μ-calpain and m-calpain are ubiquitously expressed proteases implicated in cellular migration, cell cycle progression, degenerative processes and cell death. These heterodimeric enzymes are composed of distinct catalytic subunits, encoded by Capn1 (μ-calpain) or Capn2 (m-calpain), and a common regulatory subunit encoded by Capn4. Disruption of the mouse Capn4 gene abolished both μ-calpain and m-calpain activity, and resulted in embryonic lethality, thereby suggesting essential roles for one or both of these enzymes during mammalian embryogenesis. Disruption of the Capn1 gene produced viable, fertile mice implying that either m-calpain could compensate for the loss of μ-calpain, or that the loss of m-calpain was responsible for death of Capn4 -/- mice.  相似文献   

13.
The mu- and m-calpains are major members of the calpain family that play an essential role in regulating cell motility. We have recently discovered that nicotine-activated protein kinase C iota enhances calpain phosphorylation in association with enhanced calpain activity and accelerated migration and invasion of human lung cancer cells. Here we found that specific disruption of protein phosphatase 2A (PP2A) activity by expression of SV40 small tumor antigen up-regulates phosphorylation of mu- and m-calpains whereas C2-ceramide, a potent PP2A activator, reduces nicotine-induced calpain phosphorylation, suggesting that PP2A may function as a physiological calpain phosphatase. PP2A co-localizes and interacts with mu- and m-calpains. Purified, active PP2A directly dephosphorylates mu- and m-calpains in vitro. Overexpression of the PP2A catalytic subunit (PP2A/C) suppresses nicotine-stimulated phosphorylation of mu- and m-calpains, which is associated with inhibition of calpain activity, wound healing, cell migration, and invasion. By contrast, depletion of PP2A/C by RNA interference enhances calpain phosphorylation, calpain activity, cell migration, and invasion. Importantly, C2-ceramide-induced suppression of calpain phosphorylation results in decreased secretion of mu- and m-calpains from lung cancer cells into culture medium, which may have potential clinic relevance in controlling metastasis of lung cancer. These findings reveal a novel role for PP2A as a physiological calpain phosphatase that not only directly dephosphorylates but also inactivates mu- and m-calpains, leading to suppression of migration and invasion of human lung cancer cells.  相似文献   

14.
The physiological functions and substrates of the calcium-dependent protease calpain remain only partly understood. The mu- and m-calpains consist of a mu- or m-80-kDa large subunit (genes Capn1 and Capn2), and a common 28-kDa small subunit (Capn4). To assess the role of calpain in migration, we used fibroblasts obtained from Capn4(-/-) mouse embryos. The cells lacked calpain activity on casein zymography and did not generate the characteristic calpain-generated spectrin breakdown product that is observed in wild-type cells. Capn4(-/-) cells had decreased migration rates and abnormal organization of the actin cytoskeleton with a loss of central stress fibers. Interestingly, these cells extended numerous thin projections and displayed delayed retraction of membrane protrusions and filopodia. The number of focal adhesions was decreased in Capn4(-/-) cells, but the cells had prominent vinculin-containing focal complexes at the cell periphery. The levels of the focal adhesion proteins, alpha-actinin, focal adhesion kinase (FAK), spectrin, talin, and vinculin, were the same in Capn4(+/+) and Capn4(-/-) cells. FAK, alpha-actinin, and vinculin were not cleaved in either cell type plated on fibronectin. However, proteolysis of the focal complex component, talin, was detected in the wild-type cells but not in the Capn4(-/-) cells, suggesting that calpain cleavage of talin is important during cell migration. Moreover, talin cleavage was again observed when calpain activity was partially restored in Capn4(-/-) embryonic fibroblasts by stable transfection with a vector expressing the rat 28-kDa calpain small subunit. The results demonstrate unequivocally that calpain is a critical regulator of cell migration and of the organization of the actin cytoskeleton and focal adhesions.  相似文献   

15.
The calcium-activated cysteine protease m-calpain plays a pivotal role during the earlier stages of myogenesis, particularly during fusion. The enzyme is a heterodimer, encoded by the genes capn2, for the large subunit, and capn4, for the small subunit. To study the regulation of m-calpain, the DNA sequence upstream of capn2 was analyzed for promoter elements, revealing the existence of five consensus-binding sites (E-box) for several myogenic regulatory factors and one binding site for myocyte enhancer factor-2 (MEF-2). Transient transfections with reporter gene constructs containing the E-box revealed that MyoD presents a high level of transactivation of reporter constructs containing this region, in particular the sequences including the MEF-2/E4-box. In addition, over-expression of various myogenic factors demonstrated that MyoD and myogenin with much less efficiency, can up-regulate capn2, both singly and synergistically, while Myf5 has no effect on synthesis of the protease. Experiments with antisense oligonucleotides directed against each myogenic factor revealed that MyoD plays a specific and pivotal role during capn2 regulation, and cannot be replaced wholly by myogenin and Myf5.  相似文献   

16.
The rate of autolysis of mu- and m-calpain from bovine skeletal muscle was measured by using densitometry of SDS polyacrylamide gels and determining the rate of disappearance of the 28 and 80 kDa subunits of the native, unautolyzed calpain molecules. Rate of autolysis of both the 28 and 80 kDa subunits of mu-calpain decreased when mu-calpain concentration decreased and when beta-casein, a good substrate for the calpains, was present. Hence, autolysis of both mu-calpain subunits is an intermolecular process at pH 7.5, 0 or 25.0 degrees C, and low ionic strength. The 78 kDa subunit formed in the first step of autolysis of m-calpain was not resolved from the 80 kDa subunit of the native, unautolyzed m-calpain by our densitometer, so autolysis of m-calpain was measured by determining rate of disappearance of the 28 kDa subunit and the 78/80 kDa complex. At Ca2+ concentrations of 1000 microM or higher, neither the m-calpain concentration nor the presence of beta-casein affected the rate of autolysis of m-calpain. Hence, m-calpain autolysis is intramolecular at Ca2+ concentrations of 1000 microM or higher and pH 7.5. At Ca2+ concentrations of 350 microM or less, the rate of m-calpain autolysis decreased with decreasing m-calpain concentration and in the presence of beta-casein. Thus, m-calpain autolysis is an intermolecular process at Ca2+ concentrations of 350 microM or less. If calpain autolysis is an intermolecular process, autolysis of a membrane-bound calpain would require selective participation of a second, cytosolic calpain, making it an inefficient process. By incubating the calpains at Ca2+ concentrations below those required for half-maximal activity, it is possible to show that unautolyzed calpains degrade a beta-casein substrate, proving that unautolyzed calpains are active proteases.  相似文献   

17.
Calpains are intracellular cysteine proteases, which include widely expressed mu- and m-calpains (1). Both mu-calpains and m-calpains are heterodimers consisting of a large catalytic subunit and a small regulatory subunit. The calpain small subunit encoded by the gene Capn4 directly binds to the intracellular C-terminal tail (C-tail) of the receptor for parathyroid hormone and parathyroid hormone-related peptide and modulates its cellular functions in osteoblasts in vitro (2). To investigate a potential role of the calpain small subunit in osteoblasts in vivo, we generated osteoblast-specific Capn4 knock-out mice using the Cre-LoxP system (3). Mutant mice had smaller bodies with shorter limbs, reduced trabecular bone with thinner cortices, and decreased osteoblast number. In vitro analysis confirmed that deletion of Capn4 in osteoblasts severely affected multiple osteoblast functions including proliferation, differentiation, and matrix mineralization. Collectively, our findings provide the first in vivo demonstration that the calpain small subunit is essential for proper osteoblast activity and bone remodeling.  相似文献   

18.
Calpains make up a family of Ca(2+)-dependent intracellular cysteine proteases that include ubiquitously expressed μ- and m-calpains. Both are heterodimers consisting of a distinct large catalytic subunit (calpain 1 for μ-calpain and calpain 2 for m-calpain) and a common regulatory subunit (calpain 4). The physiological roles of calpain remain unclear in the organs, including the heart, but it has been suggested that calpain is activated by Ca(2+) overload in diseased hearts, resulting in cardiac dysfunction. In this study, cardiac-specific calpain 4-deficient mice were generated to elucidate the role of calpain in the heart in response to hemodynamic stress. Cardiac-specific deletion of calpain 4 resulted in decreased protein levels of calpains 1 and 2 and showed no cardiac phenotypes under base-line conditions but caused left ventricle dilatation, contractile dysfunction, and heart failure with interstitial fibrosis 1 week after pressure overload. Pressure-overloaded calpain 4-deficient hearts took up a membrane-impermeant dye, Evans blue, indicating plasma membrane disruption. Membrane repair assays using a two-photon laser-scanning microscope revealed that calpain 4-deficient cardiomyocytes failed to reseal a plasma membrane that had been disrupted by laser irradiation. Thus, the data indicate that calpain protects the heart from hemodynamic stresses, such as pressure overload.  相似文献   

19.
Calpain belongs to the superfamily of Ca(2+)-regulated cysteine proteases, which are indispensable to the regulation of various cellular functions. Of the 15 mammalian calpain isoforms, μ- and m-calpains are the best characterized. Both μ- and m-calpain are ubiquitously expressed and exist as heterodimers, containing a distinct 80-kDa catalytic subunit (CAPN1 and CAPN2, respectively) and the common, 30-kDa regulatory subunit (CAPNS1). To date, various expression systems have been developed for producing recombinant calpains for use in structural and physiological studies, however Escherichia coli systems have proven incompatible with large-scale preparation of calpain, with the exception of rat m-calpain. Here, we have established a highly efficient method to purify active recombinant human m-calpain using an E. coli expression system at low temperature (22°C). This was achieved by co-expressing CAPN2 with a C-terminal histidine-tag, and CAPNS1, lacking the first Gly-repeated region at the N-terminal. After three sequential passes through a chromatographic column, ~5 mg of human m-calpain was homogenously purified from 1 l of E. coli culture. Proteins were stable for several months. This is the first report of efficient, large-scale purification of recombinant human m-calpain using an E. coli expression system.  相似文献   

20.
Calpains regulate a wide spectrum of biological functions, including migration, adhesion, apoptosis, secretion, and autophagy, through the modulating cleavage of specific substrates. Ubiquitous microcalpain (μ-calpain) and millicalpain (m-calpain) are heterodimers composed of catalytic subunits encoded, respectively, by CAPN1 and CAPN2 and a regulatory subunit encoded by CAPNS1. Here we show that calpain is required for the stability of the deubiquitinating enzyme USP1 in several cell lines. USP1 modulates DNA replication polymerase choice and repair by deubiquitinating PCNA. The ubiquitinated form of the USP1 substrate PCNA is stabilized in CAPNS1-depleted U2OS cells and mouse embryonic fibroblasts (MEFs), favoring polymerase-η loading on chromatin and increased mutagenesis. USP1 degradation directed by the cell cycle regulator APC/Ccdh1, which marks USP1 for destruction in the G1 phase, is upregulated in CAPNS1-depleted cells. USP1 stability can be rescued upon forced expression of calpain-activated Cdk5/p25, previously reported as a cdh1 repressor. These data suggest that calpain stabilizes USP1 by activating Cdk5, which in turn inhibits cdh1 and, consequently, USP1 degradation. Altogether these findings point to a connection between the calpain system and the ubiquitin pathway in the regulation of DNA damage response and place calpain at the interface between cell cycle modulation and DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号