首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combinations of gel electrophoresis or LC and mass spectrometry are two popular approaches for large scale protein identification. However, the throughput of both approaches is limited by the speed of the protein digestion process. Present research into fast protein enzymatic digestion has been focused mainly on known proteins, and it is unclear whether these results can be extrapolated to complex protein mixtures. In this study microwave technology was used to develop a fast protein preparation and enzymatic digestion method for protein mixtures. The protein mixtures in solution or in gel were prepared and digested by microwave-assisted protein enzymatic digestion, which rapidly produces peptide fragments. The peptide fragments were further analyzed by capillary LC and ESI-ion trap-MS or MALDI-TOF-MS. The technique was optimized using bovine serum albumin and then applied to human urinary proteins and yeast lysate. The method enabled preparation and digestion of protein mixtures in solution (human urinary proteins) or in gel (yeast lysate) in 6 or 25 min, respectively. Equivalent (in-solution) or better (in-gel) digestion efficiency was obtained using microwave-assisted protein enzymatic digestion compared with the standard overnight digestion method. This new application of microwave technology to protein mixture preparation and enzymatic digestion will hasten the application of proteomic techniques to biological and clinical research.  相似文献   

2.
In-gel peptide digestion has become a widely used technique for characterizing proteins resolved by two-dimensional gel electrophoresis. Peptides generated from gel pieces are frequently contaminated with detergent and salts. Prior to matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis, these contaminants are removed using micro scale C18 sample preparation columns. In this paper, data are presented to demonstrate the application of a solvent resistant MultiScreen 96-well plate with a low peptide binding membrane and ZipTip micropipette based sample preparation. Recoveries of peptides (m/z of 1000 to 5000 Da) derived from standard protein protease digests, were estimated at various stages of the analytical process. An optimized protocol has been established and all the reagents and consumables have been packaged in a ready to use commercial kit. Data will be presented to show the application of this technology package to accelerate the throughput of protein characterization by protease fragmentation.  相似文献   

3.
Liu X  Chan K  Chu IK  Li J 《Carbohydrate research》2008,343(17):2870-2877
Nonspecific proteolytic digestion of glycoproteins is an established technique in glycomics and glycoproteomics. In the presence of pronase E, for example, glycoproteins are digested to small glycopeptides having one to six amino acids residues, which can be analyzed with excellent sensitivity using mass spectrometry. Unfortunately, the long digestion times (1-3 days) limit the analytical throughput. In this study, we used controlled microwave irradiation to accelerate the proteolytic cleavage of glycoproteins mediated by pronase E. We used ESI-MS and MALDI-MS analyses to evaluate the microwave-assisted enzymatic digestions at various digestion durations, temperatures, and enzyme-to-protein ratios. When digesting glycoproteins, pronase E produced glycopeptides within 5 min under microwave irradiation; glycopeptides having one or two amino acids were the major products. Although analysis of peptides containing multiple amino acid residues offers the opportunity for peptide sequencing and provides information regarding the sites of glycosylation, the signals of Asn-linked glycans were often suppressed by the glycopeptides containing basic amino acids (Lys or Arg) in MALDI-MS experiments. To minimize this signal-to-content dependence, we converted the glycopeptides into their sodiated forms and then methylated them using methyl iodide. This controlled methylation procedure resulted in quaternization of the amino group of the N-terminal amino acid residue. Using this approach, the mass spectrometric response of glyco-Asn was enhanced, compensating for the poorer ionization efficiency associated with the basic amino acids residues. The methylated products of glycopeptides containing two or more amino acid residues were more stable than those containing only a single Asn residue. This feature can be used to elucidate glycan structures and glycosylation sites without the need for MS/MS analysis.  相似文献   

4.
DigesTip is a new device for in-solution protein digestion, based on a patent pending technology, able to immobilize enzymes (trypsin, in this case) on a solid surface, keeping their activity preserved. DigesTip is a standard pipette tip, usable both by human and by robots. Its main performances are: very short digestion time (1 min) and usability with low protein sample concentrations (5 microg/mL). DigesTip obtains a clear signal in MS measurements and its usage rules out several preparative steps.  相似文献   

5.
A novel method for the deprotection of oligodeoxyribonucleotides under microwave irradiation has been developed. The oligodeoxynucleotides having base labile, phenoxyacetyl (pac), protection for exocyclic amino functions were fully deprotected in 0. 2 M sodium hydroxide (methanol:water : : 1:1, v/v) = A and 1 M sodium hydroxide (methanol:water : : 1:1, v/v) = B using microwaves in 4 and 2 min, respectively. The deprotection of oligodeoxyribonucleotides carrying conventional protecting groups, dAbz, dCbzand dGpac, for exocyclic amino functions was achieved in 4 min in B without any side product formation. The deprotected oligonucleotides were compared with the oligomers deprotected using standard deprotection conditions (29% aq. ammonia, 16 h, 55 degrees C) with respect to their retention time on HPLC and biological activity.  相似文献   

6.
Microwave-assisted rapid characterization of lipase selectivities   总被引:4,自引:0,他引:4  
A rapid screening procedure for characterization of lipase selectivities using microwaves was developed. The rate of reaction of various commercial lipases (porcine pancreas, Mucor miehei, Candida rugosa, Pseudomonas cepacia) as well as lipases from laboratory isolates-Bacillus stearothermophilus and Burkholderia cepacia RGP-10 for triolein hydrolysis was 7- to 12-fold higher in a microwave oven as compared to that by pH stat. The esterification of sucrose/methanol and ascorbic acid with different fatty acids was also achieved within 30 s in a microwave using porcine pancreas, B. stearothermophilus SB-1 and B. cepacia RGP-10 lipases. The relative rates and selectivity of the lipases both for hydrolytic and synthesis reactions remains unaltered. However, the rate of reaction was dynamically enhanced when exposed to microwaves. Microwave-assisted enzyme catalysis can become an attractive procedure for rapid characterization of large number of enzyme samples and substrates, which otherwise is a cumbersome and time-consuming exercise.  相似文献   

7.
Tularemia is highly infectious and fatal zoonotic disease caused by Gram negative bacteria Francisella tularensis. The necessity to undergo medical treatment in early phase of illness in humans and possibility of making use of bacterial aerosol by terrorists in an attack create an urgent need to implement a rapid and effective method which enables to identify the agent. In our study two primers FopA F/R and hybridization probes FopA S1/S2 designed from fopA gene sequence, were tested for their potential applicability to identify F. tularensis. In this research 50 strains of F. tularensis were used and the test gave positive results. Reaction specificity was confirmed by using of non-Francisella tularensis bacterial species. The results obtained in the real-time PCR reaction with primers Tul4 F/R and hybridization probes Tul4 S1/S2, designed from tul4 gene, were comparable to the results from previous experiment with fopA - primers set. Investigation of fopA and tul4 primers and hybridization probes properties revealed characteristic Tm (melting temperature) value of the products--61 degrees C and 60 degrees C, respectively. Detection sensitivity was remarkably higher when fopA primers set was used 1 fg/microl, and for tul4 primers set, minimal detectable concentration is 10 fg/microl.  相似文献   

8.
A procedure has been developed for protein identification using mass spectrometry (MS) that incorporates sample cleanup, preconcentration, and protein digestion in a single-stage system. The procedure involves the adsorption of a protein, or protein mixture, from solution onto a hydrophobic resin that is contained within a microcolumn. Sample loading is accomplished by flowing the protein solution through the microcolumn, where the protein adsorbs to the hydrophobic surface. The protein is digested while still bound to the hydrophobic surface by flowing a buffered trypsin solution through the column bed. The peptide fragments are subsequently eluted for detection by MALDI or ESI-MS. The procedure is demonstrated using dilute protein samples containing high concentrations of salt, urea, and modest amount of sodium dodecyl sulfate relative to protein. Peptide fragments are also detected by MS from a 500 nM bacteriorhodopsin solution digested in a microcolumn. In this case, a combined cyanogen bromide/trypsin digestion was performed in-column. The procedure is applied to the MALDI-MS/MS identification of proteins present in an individual fraction collected by ion exchange HPLC separation of E. coli total cell extract. An additional application is illustrated in the analysis of a human plasma fraction. A total of 14 proteins, which were present in the sample at sub-micromolar concentrations, were identified from ESI-MS/MS. The microcolumn digestion procedure represents the next step toward a system for fully automated protein analysis through capture and digestion of the adsorbed protein on hydrophobic surfaces.  相似文献   

9.
We developed a rapid and sensitive identification method for the halotolerant yeast Debaryomyces hansenii, based on the hybridization of species-specific sequences. These sequences were first identified in a survey of D. hansenii strains by random amplification of polymorphic DNA (RAPD) as giving conserved bands in all isolates tested. Two such conserved RAPD products, termed F01pro and M18pro, were cloned from the type strain CBS 767. The specificity of these probes was assessed by hybridizing them to DNA from various species of yeasts commonly found in cheese. F01pro and M18pro hybridized to the DNA of all D. hansenii var. hansenii tested, but not to DNA of other yeast species including the closely related strain of D. hansenii var. fabryii CBS 789. Hybridization patterns of F01pro and M18pro on digested genomic DNA of D. hansenii indicated that the sequences were repeated in the genome of all D. hansenii var. hansenii tested, and gave distinct polymorphic patterns. The single F01pro probe generated 11 different profiles for 24 strains by restriction fragment length polymorphism, using one restriction enzyme. F01pro represents a new type of repeated element found in fungi, useful for both identification and typing of D. hansenii and, together with M18pro, simplifies the study of this species in complex flora.  相似文献   

10.
We developed two simple methods for extracting specific, cell-free, soluble antigens of the mold form ofParacoccidioides brasiliensis. Detection of these antigens by a microimmunodiffusion test permits the rapid and accurate identification of cultures ofP. brasiliensis. ThirtyP. brasiliensis isolates treated by these techniques produced specific exoantigens detectable by the immunodiffusion test. None of the other 78 fungal pathogens or saprophytes tested produced identical exoantigens. Personnel in any diagnostic laboratory who want a rapid and specific method for identifying or confirming suspected isolates ofP. brasiliensis can use the simple procedures described.  相似文献   

11.
A protocol for the extraction of DNA from ancient skeletal material was developed. Bone specimen samples (powder or slice), buffer, pretreatment, and extraction methodologies were compared to investigate the best conditions yielding the highest concentration of DNA. The degree of extract contamination by polymerase chain reaction (PCR) inhibitors was compared as well. Pretreatment was carried out using agitation in an incubator shaker and microwave digestion. Subsequently, DNA from bones was isolated by the classical organic phenol–chloroform extraction and silica-based spin columns. Decalcification buffer for total demineralization was required as well as lysis buffer for cell lysis to obtain DNA, whereas microwave-assisted digestion proved to be very rapid, with an incubation time of 2 min instead of 24 h at an incubator shaker without using lysis buffer. The correction of isolated DNA was detected using real-time PCR with melt curve analysis, which was 82.8 ± 0.2 °C for highly repetitive α-satellite gene region specific for human chromosome 17 (locus D17Z1). Consequently, microwave-based DNA digestion followed by silica column yielded a high-purity DNA with a concentration of 19.40 ng/μl and proved to be a superior alternative to the phenol–chloroform method, presenting an environmentally friendly and efficient technique for DNA extraction.  相似文献   

12.
AIMS: A method for rapid and simultaneous detection, identification and enumeration of specific micro-organisms using Peptide Nucleic Acid (PNA) probes is presented. METHODS AND RESULTS: The method is based on a membrane filtration technique. The membrane filter was incubated for a short period of time. The microcolonies were analysed by in situ hybridization, using peroxidase-labelled PNA probes targeting a species-specific rRNA sequence, and visualized by a chemiluminescent reaction. Microcolonies were observed as small spots of light on film, thereby providing simultaneous detection, identification and enumeration. The method showed 95-100% correlation to standard plate counts along with definitive identification due to the specificity of the probe. CONCLUSION: Using the same protocol, results were generated approximately three times faster than culture methods for Gram-positive and -negative bacterial species and yeast species. SIGNIFICANCE AND IMPACT OF THE STUDY: The method is an improvement on the current membrane filtration technique, providing rapid determination of the level of specific pathogens, spoilage or indicator micro-organisms.  相似文献   

13.
14.
The determination of DNA sequences by partial exonuclease digestion followed by Matrix-Assisted Laser Desorption Time of Flight Mass Spectrometry (MALDI-TOF) is a well established method. When the same procedure is applied to RNA, difficulties arise due to the small (1 Da) mass difference between the nucleotides U and C, which makes unambiguous assignment difficult using a MALDI-TOF instrument. Here we report our experiences with sequence specific endonucleases and chemical methods followed by MALDI-TOF to resolve these sequence ambiguities. We have found chemical methods superior to endonucleases both in terms of correct specificity and extent of sequence coverage. This methodology can be used in combination with exonuclease digestion to rapidly assign RNA sequences.  相似文献   

15.
Comparative proteomic studies can lead to the identification of protein markers for disease diagnostics and protein targets for potential disease interventions. An inverse labeling strategy based on the principle of protein stable isotope labeling and mass spectrometric detection has been successfully applied to three general protein labeling methods. In contrast to the conventional single experiment approach, two labeling experiments are performed in which the initial labeling is reversed in the second experiment. Signals from differentially expressed proteins will distinguish themselves by exhibiting a characteristic pattern of isotope intensity profile reversal that will lead to the rapid identification of these proteins. Application of the inverse labeling method is demonstrated using model systems for protein chemical labeling, protein proteolytic labeling, and protein metabolic labeling. The methodology has clear advantages which are illustrated in the various studies. The inverse labeling strategy permits quick focus on signals from differentially expressed proteins (markers/targets) and eliminates ambiguities caused by the dynamic range of detection. In addition, the inverse labeling approach enables the unambiguous detection of covalent changes of proteins responding to a perturbation.  相似文献   

16.
Protein interaction reporter (PIR) technology can enable identification of in vivo protein interactions with the use of specialized chemical cross-linkers, liquid chromatography, and high-resolution mass spectrometry. PIR-cross-linkers contain labile bonds that are specifically fragmented under low energy collision or photodissociation conditions in the mass spectrometer source, thus releasing cross-linked peptides. Successful analysis of PIR-cross-linked proteins requires the use of expected mathematical relationships between cross-linked complexes and released peptides after fragmentation of the labile PIR bonds. Presented here is a next-generation software tool, BLinks, for use in the analysis and identification of PIR-cross-linked proteins. BLinks is an advancement beyond our previous efforts by incorporation of chromatographic profiles that must match between cross-linked complexes and released peptides to enable estimation of p-values to help filter true relationships from complex data sets. Additionally, BLinks was used to incorporate Mascot database searching results from subsequent MS/MS analysis of the released peptides to facilitate identification of cross-linked proteins. BLinks was used in the analysis of human serum albumin, and 46 interpeptide relationships were found spanning 30 proximal residues with a 2.2% false discovery rate. BLinks was also used to track peptides involved in multiple, coeluting relationships that make accurate identification of protein interactions difficult. An additional 10 interpeptide relationships were identified despite poor correlation using the profiling tools provided with BLinks. Additionally, BLinks can be used to globally map all interpeptide relationships from the data analysis and customize subsequent analysis to target specific peptides of interest, thus making it a useful tool for both discovery of protein interactions and mapping protein topology.  相似文献   

17.
Integral membrane proteins (IMPs) are critical for the maintenance of biological systems and represent important targets for the treatment of disease. The hydrophobicity and low abundance of IMPs make them difficult to analyze. In proteomic analyses, hydrophobic peptides including transmembrane domains are often underrepresented, and this reduces the sequence coverage and reliability of the identified IMPs. Here we report a new strategy, mild performic acid oxidation treatment (mPAOT), for improvement of IMP identification. In the mPAOT strategy, the hydrophobicity of IMPs is significantly decreased by oxidizing their methionine and cysteine residues with performic acid, thereby improving the solubility and enzymolysis of these proteins. The application of the mPAOT strategy to the analysis of IMPs from human nasopharyngeal carcinoma CNE1 cell line demonstrated that many IMPs, including those with high hydrophobicity, could be reliably identified.  相似文献   

18.
19.
20.
A rapid purification method is reported for bovine brain neurogranin, a calmodulin-binding protein kinase C (PKC) substrate. This method takes advantage of the fact that the protein remains soluble in 2.5% perchloric acid (PCA) and that it binds to a calmodulin-Sepharose column in the absence of calcium: Other PKC substrate proteins that remain to be identified were also found to share these two properties, suggesting that a class of calmodulin-binding PKC substrates may exist in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号