首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Stress kinase MKK7: savior of cell cycle arrest and cellular senescence   总被引:2,自引:0,他引:2  
The c-Jun N-terminal kinase (JNK/SAPK) signaling cascade controls a spectrum of cellular processes, including cell growth, differentiation, transformation, and apoptosis. We recently demonstrated that stress kinase MKK7, a direct activator of JNKs, couples stress signaling to G2/M cell cycle progression, CDC2 expression, and cellular senescence. We further explored other molecules involved in JNK pathway and found that both MKK4, another direct activator of JNK, and c-Jun, a direct substrate of JNK, have similar roles to MKK7. Here we discuss the importance of the MKK4/MKK7-JNK-c-Jun pathway linking stress and developmental signals to cell proliferation, cell cycle progression, cellular senescence, and apoptosis including recent unpublished data from our lab.  相似文献   

4.
Transforming growth factor-beta (TGF-beta) has been associated with the onset of cardiac cell hypertrophy, but the mechanisms underlying this dissociation are not completely understood. By a previous study, we investigated the involvement of a MAP3K, ZAK, which in cultured H9c2 cardiac cells is a positive mediator of cell hypertrophy. Our results showed that expression of a dominant-negative form of ZAK inhibited the characteristic TGF-beta-induced features of cardiac hypertrophy, including increased cell size, elevated expression of atrial natriuretic factor (ANF), and increased organization of actin fibers. Furthermore, dominant-negative MKK7 effectively blocked both TGF-beta-and ZAK-induced ANF expression. In contrast, a JNK/SAPK specific inhibitor, sp600125, had little effect on TGF-beta- or ZAK-induced ANF expression. Our findings suggest that a ZAK mediates TGF-beta-induced cardiac hypertrophic growth via a novel TGF-beta signaling pathway that can be summarized as TGF-beta>ZAK>MKK7>ANF.  相似文献   

5.
Stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK), which is a member of the mitogen-activated protein kinase (MAPK) family, plays an important role in a stress-induced signaling cascade. SAPK/JNK activation requires the phosphorylation of Thr and Tyr residues in its Thr-Pro-Tyr motif, and SEK1 (MKK4) and MKK7 (SEK2) have been identified as the upstream MAPK kinases. Here we examined the activation and phosphorylation sites of SAPK/JNK and differentiated the contribution of SEK1 and MKK7alpha1, -gamma1, and -gamma2 isoforms to the MAPK activation. In SEK1-deficient mouse embryonic stem cells, stress-induced SAPK/JNK activation was markedly impaired, and this defect was accompanied with a decreased level of the Tyr phosphorylation. Analysis in HeLa cells co-transfected with the two MAPK kinases revealed that the Thr and Tyr of SAPK/JNK were independently phosphorylated in response to heat shock by MKK7gamma1 and SEK1, respectively. However, MKK7alpha1 failed to phosphorylate the Thr of SAPK/JNK unless its Tyr residue was phosphorylated by SEK1. In contrast, MKK7gamma2 had the ability to phosphorylate both Thr and Tyr residues. In all cases, the dual phosphorylation of the Thr and Tyr residues was essentially required for the full activation of SAPK/JNK. These data provide the first evidence that synergistic activation of SAPK/JNK requires both phosphorylation at the Thr and Tyr residues in living cells and that the preference for the Thr and Tyr phosphorylation was different among the members of MAPK kinases.  相似文献   

6.
Stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK), belonging to the mitogen-activated protein kinase family, plays an important role in stress signaling. SAPK/JNK activation requires the phosphorylation of both Thr and Tyr residues in its Thr-Pro-Tyr motif, and SEK1 and MKK7 have been identified as the dual specificity kinases. In this study, we generated mkk7(-/-) mouse embryonic stem (ES) cells in addition to sek1(-/-) cells and compared the two kinases in terms of the activation and phosphorylation of JNK. Although SAPK/JNK activation by various stress signals was markedly impaired in both sek1(-/-) and mkk7(-/-) ES cells, there were striking differences in the dual phosphorylation profile. The severe impairment observed in mkk7(-/-) cells was accompanied by a loss of the Thr phosphorylation of JNK without marked reduction in its Tyr-phosphorylated level. On the other hand, Thr phosphorylation of JNK in sek1(-/-) cells was also attenuated in addition to a decreased level of its Tyr phosphorylation. Analysis in human embryonic kidney 293T cells transfected with a kinase-dead SEK1 or a Thr-Pro-Phe mutant of JNK1 revealed that SEK1-induced Tyr phosphorylation of JNK1 was followed by additional Thr phosphorylation by MKK7. Furthermore, SEK1 but not MKK7 was capable of binding to JNK1 in 293T cells. These results indicate that the Tyr and Thr residues of SAPK/JNK are sequentially phosphorylated by SEK1 and MKK7, respectively, in the stress-stimulated ES cells.  相似文献   

7.
MAPK/ERK kinase kinase 2 (MEKK2) is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family of protein kinases. MAP3Ks are components of a three-tiered protein kinase pathway in which a MAP3K phosphorylates and activates a mitogen-activated protein kinase kinase (MAP2K), which in turn activates a mitogen-activated protein kinase (MAPK). We have previously identified residues within protein kinase subdomain X in the MAP3K, MEKK1, that are critical for its interaction with the MAP2K, MKK4, and MEKK1-induced MKK4 activation. We report here that kinase subdomain X also plays a critical role in MEKK2 activity. Select point mutations in subdomain X impair MEKK2 phosphorylation of the MAP2Ks, MKK7 and MEK5, abolish MEKK2-induced activation of the MAPKs, JNK1 and ERK5, and diminish MEKK2-dependent activation of an AP-1 reporter gene. Interestingly, the spectrum of mutations in subdomain X of MEKK2 that affects its activity is overlapping with but not identical to those that have effects on MEKK1. Thus, mutations in subdomain X differentially affect MEKK2 and MEKK1.  相似文献   

8.
The c-Jun N-terminal kinase (JNK/SAPK) signaling cascade controls a spectrum ofcellular processes, including cell growth, differentiation, transformation, and apoptosis.We recently demonstrated that stress kinase MKK7, a direct activator of JNKs, couplesstress signaling to G2/M cell cycle progression, CDC2 expression, and cellularsenescence. We further explored other molecules involved in JNK pathway and foundthat both MKK4, another direct activator of JNK, and c-Jun, a direct substrate of JNK,have similar roles to MKK7. Here we discuss the importance of the MKK4/MKK7-JNKc-Jun pathway linking stress and developmental signals to cell proliferation, cell cycleprogression, cellular senescence, and apoptosis including recent unpublished data fromour lab.  相似文献   

9.
Viral manipulation of transduction pathways associated with key cellular functions such as survival, response to microbial infection, and cytoskeleton reorganization can provide the supportive milieu for a productive infection. Here, we demonstrate that vaccinia virus (VACV) infection leads to activation of the stress-activated protein kinase (SAPK)/extracellular signal-regulated kinase (ERK) 4/7 (MKK4/7)-c-Jun N-terminal protein kinase 1/2 (JNK1/2) pathway; further, the stimulation of this pathway requires postpenetration, prereplicative events in the viral replication cycle. Although the formation of intracellular mature virus (IMV) was not affected in MKK4/7- or JNK1/2-knockout (KO) cells, we did note an accentuated deregulation of microtubule and actin network organization in infected JNK1/2-KO cells. This was followed by deregulated viral trafficking to the periphery and enhanced enveloped particle release. Furthermore, VACV infection induced alterations in the cell contractility and morphology, and cell migration was reduced in the JNK-KO cells. In addition, phosphorylation of proteins implicated with early cell contractility and cell migration, such as microtubule-associated protein 1B and paxillin, respectively, was not detected in the VACV-infected KO cells. In sum, our findings uncover a regulatory role played by the MKK4/7-JNK1/2 pathway in cytoskeleton reorganization during VACV infection.  相似文献   

10.
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) activates the c-Jun NH2-terminal kinase (JNK) pathway, although no substrates for MEKK3 have been identified. We have examined the regulation by MEKK3 of MAPK kinase 7 (MKK7) and MKK6, two novel MAPK kinases specific for JNK and p38, respectively. Coexpression of MKK7 with MEKK3 in COS-7 cells enhanced MKK7 autophosphorylation and its ability to activate recombinant JNK1 in vitro. MKK6 autophosphorylation and in vitro activation of p38alpha were also observed following coexpression of MKK6 with MEKK3. MEKK2, a closely related homologue of MEKK3, also activated MKK7 and MKK6 in COS-7 cells. Importantly, immunoprecipitates of either MEKK3 or MEKK2 directly activated recombinant MKK7 and MKK6 in vitro. These data identify MEKK3 as a MAPK kinase kinase specific for MKK7 and MKK6 in the JNK and p38 pathways. We have also examined whether MEKK3 or MEKK2 activates p38 in intact cells using MAPK-activated protein kinase-2 (MAPKAPK2) as an affinity ligand and substrate. Anisomycin, sorbitol, or the expression of MEKK3 in HEK293 cells enhanced MAPKAPK2 phosphorylation, whereas MEKK2 was less effective. Furthermore, MAPKAPK2 phosphorylation induced by MEKK3 or cellular stress was abolished by the p38 inhibitor SB-203580, suggesting that MEKK3 is coupled to p38 activation in intact cells.  相似文献   

11.
JNK3 alpha 1 is predominantly a neuronal specific MAP kinase that is believed to require, like all MAP kinases, both threonine and tyrosine phosphorylation for maximal enzyme activity. In this study we investigated the in vitro activation of JNK3 alpha 1 by MAP kinase kinase 4 (MKK4), MAP kinase kinase 7 (MKK7), and the combination of MKK4 + MKK7. Mass spectral analysis showed that MKK7 was capable of monophosphorylating JNK3 alpha 1 in vitro, whereas both MKK4 and MKK7 were required for bisphosphorylation and maximal enzyme activity. Measuring catalysis under Vmax conditions showed MKK4 + MKK7-activated JNK3 alpha 1 had Vmax 715-fold greater than nonactivated JNK3 alpha 1 and MKK7-activated JNK3 alpha 1 had Vmax 250-fold greater than nonactivated JNK3 alpha 1. In contrast, MKK4-activated JNK3 alpha 1 had no increase in Vmax compared to nonactivated levels and had no phosphorylation on the basis of mass spectrometry. These data suggest that MKK7 was largely responsible for JNK3 alpha 1 activation and that a single threonine phosphorylation may be all that is needed for JNK3 alpha 1 to be active. The steady-state rate constants kcat, Km(GST-ATF2++), and Km(ATP) for both monophosphorylated and bisphosphorylated JNK3 alpha 1 were within 2-fold between the two enzyme forms, suggesting the addition of tyrosine phosphorylation does not affect the binding of ATF2, ATP, or maximal turnover. Finally, the MAP kinase inhibitor, SB203580, had an IC50 value approximately 4-fold more potent on the monophosphorylated JNK3 alpha 1 compared to the bisphosphorylated JNK3 alpha 1, suggesting only a modest effect of tyrosine phosphorylation on inhibitor binding.  相似文献   

12.
Previous studies demonstrated that in vitro the protein kinase TAO2 activates MAP/ERK kinases (MEKs) 3, 4, and 6 toward their substrates p38 MAP kinase and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK). In this study, we examined the ability of TAO2 to activate stress-sensitive MAP kinase pathways in cells and the relationship between activation of TAO2 and potential downstream pathways. Over-expression of TAO2 activated endogenous JNK/SAPK and p38 but not ERK1/2. Cotransfection experiments suggested that TAO2 selectively activates MEK3 and MEK6 but not MEKs 1, 4, or 7. Coimmunoprecipitation demonstrated that endogenous TAO2 specifically associates with MEK3 and MEK6 providing one mechanism for preferential recognition of MEKs upstream of p38. Sorbitol, and to a lesser extent, sodium chloride, Taxol, and nocodazole increased TAO2 activity toward itself and kinase-dead MEKs 3 and 6. Activation of endogenous TAO2 during differentiation of C2C12 myoblasts paralleled activation of p38 but not JNK/SAPK, consistent with the idea that TAO2 is a physiological regulator of p38 under certain circumstances.  相似文献   

13.
IL-1β converting enzyme (ICE) family cysteine proteases are subdivided into three groups; ICE-, CPP32-, and Ich-1–like proteases. In Fas-induced apoptosis, activation of ICE-like proteases is followed by activation of CPP32-like proteases which is thought to be essential for execution of the cell death. It was recently reported that two subfamily members of the mitogen-activated protein kinase superfamily, JNK/SAPK and p38, are activated during Fas-induced apoptosis. Here, we have shown that MKK7, but not SEK1/ MKK4, is activated by Fas as an activator for JNK/ SAPK and that MKK6 is a major activator for p38 in Fas signaling. Then, to dissect various cellular responses induced by Fas, we used several peptide inhibitors for ICE family proteases in Fas-treated Jurkat cells and KB cells. While Z-VAD-FK which inhibited almost all the Fas-induced cellular responses blocked the activation of JNK/SAPK and p38, Ac-DEVD-CHO and Z-DEVD-FK, specific inhibitors for CPP32-like proteases, which inhibited the Fas-induced chromatin condensation and DNA fragmentation did not block the activation of JNK/SAPK and p38. Interestingly, these DEVD-type inhibitors did not block the Fas-induced morphological changes (cell shrinkage and surface blebbing), induction of Apo2.7 antigen, or the cell death (as assessed by the dye exclusion ability). These results suggest that the Fas-induced activation of the JNK/SAPK and p38 signaling pathways does not require CPP32-like proteases and that CPP32-like proteases, although essential for apoptotic nuclear events (such as chromatin condensation and DNA fragmentation), are not required for other apoptotic events in the cytoplasm or the cell death itself. Thus, the Fas signaling pathway diverges into multiple, separate processes, each of which may be responsible for part of the apoptotic cellular responses.  相似文献   

14.
15.
16.
Exposure of mesangial cells to ionic Cd(2+) induces the proto-oncogene c-fos, while activating both Erk and stress-activated protein kinase (SAPK) MAP kinase pathways. While we have previously used a pharmacological inhibitor of Erk activation to implicate involvement of this pathway in the induction of c-fos by Cd(2+), the consequences of SAPK activation remained unknown. Here we use dominant negative inhibitors of the SAPK kinases, SEK1 and MKK7, to show that Cd(2+) activates SAPK through MKK7, but that partial inhibition of SAPK alone is insufficient to significantly affect the magnitude of the Cd(2+)-dependent increase in c-fos mRNA. However, inhibition of Erk and SAPK pathways together abrogates the increase, suggesting that these pathways act in concert in the induction of c-fos by this toxic metal.  相似文献   

17.
The p38 group of kinases belongs to the mitogen-activated protein (MAP) kinase superfamily with structural and functional characteristics distinguishable from those of the ERK, JNK (SAPK), and BMK (ERK5) kinases. Although there is a high degree of similarity among members of the p38 group in terms of structure and activation, each member appears to have a unique function. Here we show that activation of p38gamma (also known as ERK6 or SAPK3), but not the other p38 isoforms, is required for gamma-irradiation-induced G(2) arrest. Activation of the MKK6-p38gamma cascade is sufficient to induce G(2) arrest in cells, and expression of dominant negative alleles of MKK6 or p38gamma allows cells to escape the DNA damage-induce G(2) delay. Activation of p38gamma is dependent on ATM and leads to activation of Cds1 (also known as Chk2). These data suggest a model in which activation of ATM by gamma irradiation leads to the activation of MKK6, p38gamma, and Cds1 and that activation of both MKK6 and p38gamma is essential for the proper regulation of the G(2) checkpoint in mammalian cells.  相似文献   

18.
The cellular response to genotoxic stress includes activation of protein kinase Cdelta (PKCdelta). The functional role of PKCdelta in the DNA damage response is unknown. The present studies demonstrate that PKCdelta is required in part for induction of the stress-activated protein kinase (SAPK/JNK) in cells treated with 1-beta-d-arabinofuranosylcytosine (araC) and other genotoxic agents. DNA damage-induced SAPK activation was attenuated by (i) treatment with rottlerin, (ii) expression of a kinase-inactive PKCdelta(K-R) mutant, and (iii) down-regulation of PKCdelta by small interfering RNA (siRNA). Coexpression studies demonstrate that PKCdelta activates SAPK by an MKK7-dependent, SEK1-independent mechanism. Previous work has shown that the nuclear Lyn tyrosine kinase activates the MEKK1 --> MKK7 --> SAPK pathway but not through a direct interaction with MEKK1. The present results extend those observations by demonstrating that Lyn activates PKCdelta, and in turn, MEKK1 is activated by a PKCdelta-dependent mechanism. These findings indicate that PKCdelta functions in the activation of SAPK through a Lyn --> PKCdelta --> MEKK1 --> MKK7 --> SAPK signaling cascade in response to DNA damage.  相似文献   

19.
Leucine zipper-bearing kinase (LZK) is a novel member of the mixed lineage kinase (MLK) protein family, the cDNA of which was first cloned from a human brain cDNA library [Sakuma, H., Ikeda, A., Oka, S., Kozutsumi, Y., Zanetta, J.-P., and Kawasaki, T. (1997) J. Biol. Chem. 272, 28622-28629]. Several MLK family proteins have been proposed to function as MAP kinase kinase kinases in the c-Jun NH(2) terminal kinase (JNK)/stress-activated protein kinase (SAPK) pathway. In the present study, we demonstrated that, like other MLKs, LZK activated the JNK/SAPK pathway but not the ERK pathway. LZK directly phosphorylated and activated MKK7, one of the two MAPKKs in the JNK/SAPK pathway, to a comparable extent to a constitutive active form of MEKK1 (MEKK1DeltaN), suggesting a biological role of LZK as a MAPKKK in the JNK/SAPK pathway. Recent studies have revealed the essential roles of scaffold proteins in intracellular signaling pathways including MAP kinase pathways. JIP-1, one of the scaffold proteins, has been shown to be associated with MLKs, MKK7, and JNK [Whitmarsh, A.J., Cavanagh, J., Tournier, C., Yasuda, J., and Davis, R.J. (1998) Science 281, 1671-1674], suggesting the presence of a selective signaling pathway including LZK, MKK7, and JNK. Consistent with this hypothesis, we provided evidence that LZK is associated with the C-terminal region of JIP-1 through its kinase catalytic domain. In addition, LZK-induced JNK activation was markedly enhanced when LZK and JNK were co-expressed with JIP-1. These results constituted important clues for understanding the molecular mechanisms regulating the signaling specificities of various JNK activators under different cellular conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号