首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to optimize the protocols for bovine oocytes activation through comparing the effectiveness of different treatments on the activation and subsequent development of oocytes and examining the effects of two combined activation treatments on the blastocyst apoptosis and ploidy. Cumulus-oocyte complexes (COCs) were recovered from abattoir-derived ovaries and matured in vitro. After maturation, cumulus-free oocytes were activated according to the experiment designs. Activated oocytes were cultured in vitro in modified synthetic oviductal fluid (mSOF) medium and assessed for pronuclear formation (15-16 h), cleavage (46-48 h) and development to the blastocyst stage. In Experiment 1, the matured oocytes were treated with single activation agents, including ionomycin (5 microM for 5 min), ethanol (7% for 7 min), calcium ionophore A23187 (5 microM for 5 min) or strontium (10mM for 5h). The pronuclear formation and cleavage rate were higher significantly in ionomycin (39.0 and 30.7%) and ethanol (41.5 and 28.1%) treatment alone compared to other treatments (9.7-25.2 and 11.3-23.7%, respectively, P<0.05). Very low blastocyst rates (3.9-5.3%) resulted which were not significantly different among treatments (P>0.05). For the combined activation treatment (Experiment 2), the same concentrations of ionomycin and ethanol as in Experiment 1 were used in combination with either 6-dimethylaminopurine (6-DMAP, 2.0 mM for 3 h) or cycloheximide (CHX)+cytochalasin B (CB, 10 microg/ml for 3 h). The pronuclear formation, cleavage rate, blastocyst rate and cell number of blastocyst were higher significantly (P<0.05) in ionomycin+6-DMAP treatment (67.1, 69.2, 28.0 and 91.3%, respectively) and ethanol+CHX+CB treatment (68.9, 70.2, 25.5 and 89.3%, respectively) compared to other treatments (11.7-58.1, 10.2-47.1, 1.5-24.2 and 34.2-62.7%, respectively). In Experiment 3, the parthenogenetic blastocysts produced by activation with ionomycin+6-DAMP and ethanol+CHX+CB and in vitro fertilized blastocysts (control group) were examined for apoptosis using a terminal deoxynucleotidyl transferase mediated deoxyuridine 5-triphosphate nick-end labeling (TUNEL) assay. The ethanol+CHX+CB treatment (7.0%) showed significantly lower blastocyst apoptosis index compared to ionomycin+6-DAMP treatment (9.1%, P<0.05). Furthermore, the chromosomal composition in the parthenotes embryos differed (P<0.05) among treatments. The percentage of haploid parthenotes was higher in ionomycin+6-DMAP treatment than ethanol+CHX+CB treatment. These results suggested that ethanol+CHX+CB treatment was more favorable protocol for parthenogenesis of bovine oocytes.  相似文献   

2.
Studies were undertaken to determine whether electrical stimulation, or ethanol treatment alone or in combination with 6-dimethylaminopurine (6-DMAP) influenced the rate of parthenogenetic activation of rat oocytes. The percentages of activated oocytes with pronuclei (89-91%) and those developed to the two-cell stage (68-72%) were significantly higher after electrical stimulation with direct current (DC) at 100 V/mm, 99 microsec once or twice, than when other DC voltages (75, 150, and 200) were applied or when ethanol or 6-DMAP treatment was given alone. However, none of the activated oocytes developed beyond the four-cell stage. The percentages of activated oocytes with pronuclei (100%) that developed to the two-cell (100%), eight-cell (89%) and blastocyst stages (50%) were significantly higher when electrical stimulation was followed by treatment with 2 mM 6-DMAP for 4 hr than when other combined procedures were applied. In conclusion, the results of the present study clearly showed that combined treatment of electrical stimulation or ethanol with 6-DMAP induces parthenogenetic activation and subsequent development of rat oocytes in vitro.  相似文献   

3.
This study investigated the effect of treatment with 6-dimethylaminopurine (6-DMAP) following fusion on in vitro development of porcine nuclear transfer (NT) embryos. Frozen thawed ear skin cells were transferred into the perivitelline space of enucleated oocytes. Reconstructed oocytes were fused and activated with electric pulse in 0.3 M mannitol supplemented with either 0.1 or 1.0 mM CaCl(2). In each calcium concentration, activated oocytes were divided into three groups. Two groups of them were exposed to either ionomycin (I + 6-DMAP or 6-DMAP alone. In experiment 2, fused NT embryos in 0.3 M mannitol containing 1.0 mM CaCl(2) were exposed to 6-DMAP either immediately or 20 min after fusion/activation. For 0.1 mM CaCl(2), oocytes activated with either I + 6-DMAP or 6-DMAP alone showed a higher (P < 0.05) developmental rate to the blastocyst stage than those activated with an electric pulse alone (26.7 and 22.5 vs. 12.5%). For 1.0 mM CaCl(2), oocytes activated with either I + 6-DMAP or 6-DMAP alone showed significantly higher (P < 0.05) developmental rate to the blastocyst stage (35.6 and 28.3 vs. 19.8%). Developmental rate to the blastocyst stage was (P < 0.05) increased in NT embryos activated with 6-DMAP 20 min after fusion. 6-DMAP made a higher and wider Ca(2+) transient compared to that induced by electric pulses (Fig. 3). The fluctuation lasted during the time that oocytes were cultured in 6-DMAP. Regardless of Ca(2+) concentration in fusion medium, activation with 6-DMAP following electric pulses supported more development of porcine NT embryos. Activation of NT embryos with 6-DMAP after fusion in the presence of 1.0 mM CaCl(2) could support better developmental rate to the blastocyst stage.  相似文献   

4.
Optimization of parthenogenetic activation protocol in porcine   总被引:10,自引:0,他引:10  
The effects of the electrical field strengths, number of pulses, and post-activation media on chromatin conformation and parthenogenetic development were studied to optimize the activation protocol for porcine nuclear transfer. In experiment 1, electrical field strengths were examined. Oocytes were subjected to square direct current pulses at output voltages of 1.2, 1.7, 2.2, and 2.7 kV/cm for 1 x 30 microsec. The voltage resulting from experiment 1 was 2.2 kV/cm, in which 50.0% of activated oocytes developed to blastocysts in vitro. In experiment 2, the influence of 1, 2, and 3 pulses on blastocyst development was tested using field strengths and post-activation medium described in experiment 1. Oocytes activated by a single 30 microsec pulse of 2.2 kV/cm DC yielded a higher blastocyst rate (56.3%) than oocytes activated by 2 or 3 pulses (<42.5%). In experiment 3 and 4, we investigated the effects of cytochalasin B (CB), cycloheximide (CH), and CB + CH on nuclear development stages and parthenogenetic development following a single 30 microsec pulse of 2.2 kV/cm DC. The percentage of activated oocytes was not different among CB (93.3%), CB + CH (98.3%), control (80.0%), and CH (80.0%) groups 12 hr after activation. Treatment with CB (57.5%) or CB + CH (53.8%) enhanced the blastocyst rate compared with other groups, CH (23.8%) treated- and control group (18.8%). The results demonstrated that a single 30 microsec pulse of 2.2 kV/cm DC followed by culturing in post-activation medium with CB for 5 hr were effective parameters for parthenogenetic activation and blastocyst formation of in vitro matured porcine oocytes which suggests that a single calcium rise is sufficient to activate pig oocytes and to achieve high rate of blastocyst development.  相似文献   

5.
The objective of this study was to determine developmental pattern, total cell number, apoptosis and apoptosis-related gene expression in haploid and diploid embryos following parthenogenetic activation. In vitro-matured porcine oocytes were activated by electrical pulses and cultured in the absence or presence of cytochalasin B for 3 h. Zygotes with two polar bodies (haploid) and one polar body (diploid) were carefully selected and were further cultured in NCSU 23 medium containing 0.4% bovine serum albumin (BSA) for 7 days. The percentage of development to blastocyst stage was higher (p < 0.01) in the diploid than in the haploid parthenotes. In haploid blastocysts, average total cell number was significantly reduced (p < 0.05) and apoptosis was increased at day 7. The relative abundance of Bcl-xL and Bak mRNA in the diploid blastocysts was similar to that of in vivo-fertilized embryos. However, Bcl-xL was significantly decreased, and Bak mRNA was significantly increased (p < 0.05) in haploid parthenotes compared with the diploid parthenotes. These results suggest that the haploid state affects apoptosis-related gene expression which results in increased apoptosis and decreased developmental competence of haploid parthenotes.  相似文献   

6.
This study was carried out to investigate the various concentrations and exposure times of ethanol, one of many intracellular calcium elevating agents, and a sequential combination of ethanol (8%), cycloheximide (CHX, 10 microg/ml), cytochalasin B (CCB, 7.5 microg/ml) and 6-dimethylaminopurine (6-DMAP, 2 mM) to improve parthenogenetic activation and development of in vitro matured porcine oocytes. Cumulus-oocyte complexes (COCs) were matured in tissue culture medium (TCM) 199 for 44 h at 38.5 degrees C, 5% CO2 in air. Cumulus-free oocytes showing first polar body were activated by concentrations of 0, 5, 6, 7, 8, 9 and 10% ethanol for 10 min and exposure times of 0, 5, 8, 10, 12 and 15 min with 8% ethanol in HEPES buffered (25 mM) NCSU-23 medium. Also, oocytes were activated with the NCSU-23 medium containing 8% ethanol for 10 min. After that, oocytes were incubated in the NCSU-23 medium supplemented with CHX, CCB, 6-DMAP, CHX + CCB, CHX + 6-DMAP, CCB + 6-DMAP and CHX + CCB + 6-DMAP for 3h, respectively. Following activation, oocytes were transferred into the NCSU-23 medium containing 0.4% BSA for further culture of 20 and 144 h at 38.5 degrees C, 5% CO2 in air. The activation rates of oocytes were higher in 6, 7 and 8% ethanol concentrations compared with 0, 5, 9 and 10% ethanol concentrations. Significantly, more oocytes (29.3-33.7%) were activated in the exposure for 8, 10, 12 and 15 min than those in the exposure for 0 and 5 min, but there was no difference due to exposure to 8% ethanol for 8-15 min. Oocytes treated by chemical agents (40.5-70.5%) after exposure to ethanol significantly improved the rate of oocyte activation compared with ethanol alone (31.2%). The percentage of cleaved oocytes was higher in the ethanol+CHX+CCB+6-DMAP treatment (66.4%) than in other treatments (24.9-57.6%). Also, the rate of blastocyst formation was higher in the ethanol+CHX+CCB+6-DMAP treatment (25.0%) than in other treatments (0.0-19.3%). In conclusion, the optimal activation treatment of ethanol exposure alone for the in vitro matured porcine oocytes was 8% ethanol for 8-15 min. Oocytes activated by 8% ethanol for 10 min and incubated in the NCSU-23 medium supplemented with CHX, CCB and 6-DMAP for 3 h were more efficient for parthenogenetic development of in vitro matured porcine oocytes.  相似文献   

7.
Cheng WM  Sun XL  An L  Zhu SE  Li XH  Li Y  Tian JH 《Animal biotechnology》2007,18(2):131-141
The aim of this study was to investigate the effect of electrical pulse, ethanol, and ionomycin combined with cycloheximide (CHX), cytochalasin B (CB), and 6-dimethylaminopurine (6-DMAP) on parthenogenetic developmental competence of in vitro matured porcine oocytes. In experiment 1, oocytes were treated with direct current electrical pulse (DC pulse) and then incubated in the NCSU-23 medium supplemented with CHX, 6-DMAP, CB + CHX, and CB + 6-DMAP for 6 h, respectively. The rate of blastocyst development in DC pulse + CB + 6-DMAP group was significantly higher than those in other groups (42.4% vs 23.9% approximately 35.8%; P < 0.05); however, there were no differences in both of the cleavage rate and the cell number of blastocysts among four groups. In experiment 2, oocytes were treated with NCSU-23 medium containing 20 muM ionomycin for 40 min and then incubated in the NCSU-23 medium supplemented with CHX, 6-DMAP, CB + CHX and CB + 6-DMAP for 6 h, respectively. The rates of cleavage and blastocyst development in ionomycin + 6-DMAP group were higher than those obtained in other groups (66.2% vs 46.3% approximately 57.3%; 22.3% vs 7.4% approximately 16.1%; P < 0.05). In experiment 3, the activation effects of ethanol combined with 6-DMAP, CHX, CB + 6-DMAP and CB + CHX were investigated. The rates of cleavage and blastocyst development in ethanol + CB + 6-DMAP group were significantly higher than those in other groups (55.5% vs 42% approximately 46.2%; 18.0% vs 7.1% approximately 11.9%; P < 0.05). In experiment 4, the optimal activation protocols in each group plus DC pulse + ionomycin + 6-DMAP were compared. The results showed the rates of cleavage in DC pulse + CB + 6-DMAP group and ionomycin + 6-DMAP were higher than those in ethanol + CB + 6-DMAP and DC pulse + ionomycin + 6-DMAP (73.8-74.4% vs 56.5-57.5%; P < 0.05), but the blastocyst development only in DC pulse + CB + 6-DMAP group was significantly higher than that in other groups (34.1% vs 13.4% approximately 22.3%; P < 0.05). Total cell number of blastocysts in the group of DC pulse + ionomycin + 6-DMAP was higher than that in other groups (34.1 vs 25.3-27.2; P < 0.05). In conclusion, DC pulse, ethanol, CB, and 6-DMAP all affected the parthenogenesis of porcine oocytes matured in vitro, but their combination of DC pulse + CB + 6-DMAP showed the best result in both of cleavage and blastocyst development.  相似文献   

8.
The protocol of ionomycin followed by 6-dimethylaminopurine (6-DMAP) is commonly used for activation of oocytes and reconstituted embryos. Since numerous abnormalities and impaired development were observed when oocytes were activated with 6-DMAP, this protocol needs optimization. Effects of concentration and treatment duration of both drugs on activation and development of goat oocytes were examined in this study. The best oocyte activation (87-95%), assessed by pronuclear formation, was obtained when oocytes matured in vitro for 27 hr were treated with 0.625-20 microM ionomycin for 1 min before 6-hr incubation in 2 mM 6-DMAP. Progressional reduction of time for 6-DMAP-exposure showed that the duration of 6-DMAP treatment can be reduced to 1 hr from the second up to the fourth hour after ionomycin, to produce activation rates greater than 85%. Activation rates of oocytes in vitro matured for 27, 30, and 33 hr were higher (P < 0.05) than that of oocytes matured for 24 hr when treated with ionomycin plus 1-hr (the third hour) 6-DMAP, but a 4-hr incubation in 6-DMAP enhanced activation of the 24-hr oocytes. Goat activated oocytes began pronuclear formation at 3 hr and completed it by 5-hr post ionomycin. An extended incubation in 6-DMAP (a) impaired the development of goat parthenotes, (b) quickened both the release from metaphase arrest and the pronuclear formation, and (c) inhibited the chromosome movement at anaphase II (A-II) and telophase II (T-II), leading to the formation of one pronucleus without extrusion of PB2. In conclusion, duration, concentration, and timing of ionomycin and 6-DMAP treatment had marked effects on goat oocyte activation, and to obtain better activation and development, goat oocytes matured in vitro for 27 hr should be activated by 1 min exposure to 2.5 microM ionomycin followed by 2 mM 6-DMAP treatment for the third hour.  相似文献   

9.
The present study was conducted to investigate the effects of different culture durations (24-36 hr) on bovine oocyte maturation in vitro and the effect of the presence or absence of cumulus cells at the time of treatment to induce parthenogenetic activation (exposure to ethanol and cytochalasin B; CB) (experiment I). The effects of dosage (2.5 or 5.0 micrograms/ml) and incubation time (2.5, 5, or 10 hr) in CB (experiment II) on the subsequent development to the blastocyst stage in vitro was also investigated. In experiment I, cleavage and development to the blastocyst stage were not affected by the presence or absence of cumulus cells at the time of parthenogenetic activation. However, the 24-hr culture duration for in vitro maturation had a significantly lower rate of development to the blastocyst stage than the longer culture durations (27-36 hr). In experiment II, treatment with 5 micrograms/ml CB for 5 hr showed the highest percentage of development to blastocyst in the oocytes matured for both 27 and 30 hr. To determine the viability of the parthenogenetic embryos (morulae and blastocysts), four recipient heifers received two embryos each, and one heifer was found to be pregnant on day 35 following transfer. Although fetal heartbeat was not observed, the subsequent estrus was prolonged in all heifers. The present results demonstrate development of in vitro-matured, parthenogenetically activated bovine embryos up to the preimplantation stage.  相似文献   

10.
Development of an effective activation protocol is of great importance for studying oocyte competence and embryo cloning. Experiments were designed to examine effects of intracellular calcium elevating agents such as calcium ionophore A23187 (CaA) and ethanol, or protein synthesis and phosphorylation inhibitors such as cycloheximide (CH) and 6-dimethylaminopurine (6-DMAP), or a sequential combination of these agents on both parthenogenetic development and protein patterns of newly matured bovine oocytes. Oocytes were matured for 24 hr in M-199 supplemented with follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol at 39°C in humidified air. They were then activated by various treatments and cultured in KSOM. Protein patterns at 15 hr after treatment were determined on 8–15% gradient SDS-PAGE and silver stained. Results demonstrated that none of the chemical agents—CaA, ethanol, 6-DMAP, or cycloheximide—could effectively induce parthenogenetic development of young bovine oocytes. When compared with the single treatments, sequentially combined treatments of CaA with 6-DMAP or with cycloheximide plus cytochalasin D (CD) significantly increased the rates of cleavage (78–82% versus 3–13%) and blastocyst development (31–40% versus 0%), which were comparable with those of IVF group (80% and 35%, respectively; P > 0.05). Supplementation with CD to the combined CaA and CH treatment improved rates of cleavage and blastocyst development versus without CD supplementation (31% versus 7%; P < 0.05). Fluorescent microscopy revealed that 95% (n = 40) of oocytes treated with CaA plus 6-DMAP had one pronucleus (PN) and one polar body (PB), while 88% (n = 40) in the CaA plus cycloheximide–treated group had one PN and two PBs and 85% (n = 40) in CaA plus cycloheximide and CD group had two PNs and one PB. Treatment by CaA alone resulted in 73% of oocytes (n = 40) arrested at a metaphase stage with two PBs (named as metaphase III or MIII). Protein patterns were similar for chemically activated and in vitro–fertilized (IVF) oocytes in that the 138- and 133-kDa proteins, whose functions are not yet known, were present in the metaphase-stage (MII 24 hr, MII 40 hr, and MIII) oocytes but were absent in PN-stage oocytes regardless of treatment. Therefore, these proteins seem to be metaphase-associated proteins. Taken together, we conclude that optimal parthenogenetic development of newly matured bovine oocytes can be obtained by calcium ionophore treatment followed by incubation in either 6-DMAP or cycloheximide plus cytochalasin D and that the reduction of the 138- and 133-kDa proteins might be necessary for the full activation of bovine oocytes. Mol. Reprod. Dev. 49:298–307, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
12.
Experiments were conducted to examine the effects of (a) different activation methods, (b) incubation time in calcium-free medium and (c) bisbenzimide staining on the activation and subsequent development of pig oocytes. Oocytes were matured in vitro and activated by one of the following methods: combined thimerosal/dithiothreitol (DTT) treatment, calcium ionophore A23187 treatment followed by incubation in the presence of 6-dimethylaminopurine (6-DMAP), electroporation, and electroporation followed by incubation with cytochalasin B. There were no significant differences in the activation rate (ranging from 70.0% to 88.3%) and the percentage of cleaved embryos after activation (ranging between 48.8% and 58.8%) among the four treatment groups (p < 0.05). The rate of development of the blastocyst stage in oocytes activated by thimerosal/DTT (10.0%) or electroporation followed by cytochalasin B treatment (12.3%) was significantly higher (p < 0.05) than in the group activated with A23187/6-DMAP (2.5%). Both the activation rate and the rate of blastocyst formation in oocytes that were incubated in Ca(2+)-free medium for 8 h before thimerosal/DTT activation were significantly lower (p < 0.05) than in those incubated for 0, 1 or 4 h. Intracellular Ca2+ measurements revealed that the Ca2+ homeostasis in these oocytes were severely altered. Staining of oocytes with 5 micrograms/ml bisbenzimide for 2 h decreased the quality of blastocysts and increased the rate of degenerated embryos at day 6. Two activation protocols (thimerosal/DTT and electroproation) were used for activation after nuclear transfer; the rate of nuclear formation did not differ in the oocytes activated by the two different methods.  相似文献   

13.
The viability of SCNT embryos is poor, with an extremely low cloned piglet production rate. In the present work, we studied the effect of three activation protocols based on ionomycin treatment (5 microM ionomycin for 5 min and incubated in 2 mM 6-DMAP for 3.5 h) or electric stimuli (two square wave electrical DC pulses of 1.2 kV/cm for 30 micros) combined or not with 6-DMAP on parthenogenetic embryo development. Oocytes activated by ionomycin plus 6-DMAP showed lower cleavage (47.2 vs. 78.5-81.5; p < 0.05) and blastocyst rates (11.3 vs. 29.2-32.1; p < 0.05) than those activated by electrical and electrical plus 6-DMAP treatments. Also, we studied the effect of addition of serum to maturation medium (0% vs. 10%) on nuclear maturation and further parthenogenetic and SCNT embryo development. We observed in the parthenogenetic embryos that cleavage rates in the serum-free group were significantly higher than in the serum-supplemented group (81.8 vs. 69.6% respectively; p < 0.05), although these differences were not detected in blastocyst rates or blastocyst nuclei numbers. Regarding SCNT embryos, no significant differences were observed in cleavage or blastocyst rates between different experimental groups of SCNT embryos. In conclusion, electrical pulse followed or not by 6-DMAP was found to be an efficient procedure to artificially activate MII porcine oocytes. Moreover, the addition of serum to oocyte maturation media did not seem to improve parthenogenetic or SCNT porcine embryo development.  相似文献   

14.
The objective was to produce porcine tetraploid parthenogenetic embryos using cytochalasin B, which inhibits polar body extrusion. Porcine cumulus-enclosed oocytes aspirated from antral follicles were cultured for 51 h, and treated with cytochalasin B from 35 h to 42 h after the start of culture. After maturation culture, 74.7% (2074/2775) of oocytes treated with cytochalasin B did not extrude a polar body (0PB oocytes). In contrast, 80.4% (1931/2403) of control oocytes extruded a polar body (1PB oocytes). The 0PB oocytes were electrically stimulated, treated with cytochalasin B again for 3 h, and then cultured without cytochalasin B. Six days after electrical stimulation, 49.8% (321/644) reached the blastocyst stage. The number of cells in these blastocysts derived from 0PB oocytes was significantly lower than that from 1PB oocytes (0PB: 24.9 ± 10.6; 1PB: 43.0 ± 17.1; mean ± SD). A porcine chromosome 1-specific sequence was detected in parthenogenetic 0PB embryos by fluorescence in situ hybridization (FISH) analysis. Typical pronucleus-stage samples derived from 0PB embryos had two pronuclei, each with two signals. In two-cell and blastocyst-stage embryos, four signals were detected in each nucleus derived from 0PB embryos. We inferred that 0PB oocytes, which had a tetraploid number of chromosomes, started to develop as tetraploid parthenotes after electrical stimulation, and that tetraploid status was stably maintained during early embryonic development, at least until the blastocyst stage.  相似文献   

15.
Aneuploidy underlies failed development and possibly apoptosis of some preimplantation embryos. We employed a haploid model in the mouse to study the effects of aneuploidy on apoptosis in preimplantation embryos. Mouse metaphase II oocytes that were activated with strontium formed haploid parthenogenetic embryos with 1 pronucleus, whereas activation of oocytes with strontium plus cytochalasin D produced diploid parthenogenetic embryo controls with 2 pronuclei. Strontium induced calcium transients that mimic sperm-induced calcium oscillations, and ploidy was confirmed by chromosomal analysis. Rates of development and apoptosis were compared between haploid and diploid parthenogenetic embryos (parthenotes) and control embryos derived from in vitro fertilization (IVF). Haploid mouse parthenotes cleaved at a slower rate, and most arrested before the blastocyst stage, in contrast to diploid parthenotes or IVF embryos. Developmentally retarded haploid parthenotes exhibited apoptosis at a significantly higher frequency than did diploid parthenotes or IVF embryos. However, diploid parthenotes exhibited rates of preimplantation development and apoptosis similar to those of IVF embryos, indicating that parthenogenetic activation itself does not initiate apoptosis during preimplantation development. These results suggest that haploidy can lead to an increased incidence of apoptosis. Moreover, the initiation of apoptosis during preimplantation development does not require the paternal genome.  相似文献   

16.
The effects of different activation methods and culture conditions on early development of porcine parthenotes were examined. Three different activation methods were tested: (1) electroporation; (2) electroporation followed by incubation in the presence of butyrolactone I, an inhibitor of cdc2 and cdk2 kinases; and (3) electroporation followed by a treatment with cycloheximide, a blocker of protein synthesis. The activated oocytes were cultured in two different media, NCSU-23 and PZM-3 under 5% CO2 in air. In a separate experiment, the effects of high (approximately 20%) or low (5%) O2 tension on early embryo development were also evaluated. The average pronuclear formation was less (p<0.05) in the electroporated oocytes (83.9+/-1.7%) compared with those activated by electroporation and butyrolactone I or electroporation plus cycloheximide (92.8+/-0.8 and 93.0+/-1.0%). In PZM-3 medium, the average frequencies of blastocyst formation (59.7+/-3.6%) and hatching (10.6+/-1.3%) were greater than those in NCSU-23 medium (39.9+/-3.1% blastocyst formation, p<0.05; and 0.2+/-0.2% hatching; p<0.001). Furthermore, the average nuclear number was also greater (p<0.001) in blastocysts developed in PZM-3 (50.2+/-1.3) than in those developed in NCSU-23 (35.3+/-1.1). Blastocyst formation was similar (p>0.10) among the three activation procedures when parthenotes were cultured in NCSU-23, while in PZM-3 more (p<0.05) parthenotes produced by electroporation plus butyrolactone or electroporation plus cycloheximide developed into blastocysts compared to electroporation alone (64.9+/-5.2 and 68.6+/-3.5% compared with 45.6+/-4.7%). Incidences of apoptotic nuclei were similar (p>0.10) among all treatments. No difference in development was found between parthenotes that developed under high versus low O2 tension (p>0.10). These results demonstrate that activation methods targeting the calcium signaling pathway at several points trigger embryonic development more efficiently than electroporation alone. The data also imply that the PZM-3 medium provides for enhanced culture conditions for the early development of parthenogenetic porcine embryos than NCSU-23.  相似文献   

17.
Yin XJ  Tani T  Kato Y  Tsunoda Y 《Theriogenology》2000,54(9):1469-1476
The present study determined a suitable parthenogenetic activation procedure for rabbit oocytes and examined the developmental potential of enucleated oocytes receiving cultured cumulus cells. Unfertilized oocytes recovered from superovulated rabbits were activated with one or two sets of electrical pulses, with or without subsequent administration of 6-dimethylaminopurine (6-DMAP). The proportion of oocytes treated with one or two sets of electrical pulses and 6-DMAP that cleaved (87% and 98%, respectively) and developed into blastocysts (77% and 85%, respectively) was significantly higher (P < 0.05) than those activated with electrical pulses alone (30% and 42% for cleavage, 7% and 17% for blastocysts). Cumulus cells separated from ovulated oocytes obtained from mature rabbits were cultured for three to five passages and then induced to quiescence by serum starvation before nuclear transfer. The enucleated oocytes receiving cumulus cells were activated with electrical pulses followed by the addition of 6-DMAP, and cultured in vitro for 5 to 6 d or transferred to pseudopregnant recipient females 1 d after activation. Of 186 nuclear-transferred oocytes, 123 (66%) cleaved and 42 (23%) developed into blastocysts. After transfer of 174 nuclear-transferred oocytes to 8 recipient females, a total of 3 implantation sites were observed in 3 recipient females but no fetuses were obtained.  相似文献   

18.
The effects of chemical activation on birth efficiency of cloned pigs were studied by investigating the developmental process from porcine oocyte activation to birth of cloned pigs. Three different activation methods were used: (i) Electroporation (Ele); (ii) Ele followed by incubation with 6-dimethylaminopurine (6-DMAP); and (iii) Ele followed by a treatment with cycloheximide (CHX). In experiment 1, the rates of cleavage, developmental rates and cell number of porcine parthenogenetic (PA) embryos were investigated in the three treatment groups. In experiment 2, NT embryos produced by the three different activation treatments were compared for the rates of cleavage, development and cell number. Finally, the effects of Ele and Ele+CHX activation methods on birth efficiency of cloned pigs were compared. The activated oocytes treated by combination activation generally showed a higher (P<0.05) blastocyst rate and produced more expanded blastocysts than oocytes activated with Ele. The rates of cleavage and total cell number of parthenotes were not significantly different. Parthenogenetic embryos activated with 6-DMAP developed into blastocyst and expanded blastocyst stages at a significantly (P<0.05) higher rate than those treated with Ele, but the developmental capability was dramatically decreased in NT embryos. With the CHX activation method, the NT embryo blastocyst rate was substantially (P<0.05) increased although the production of expanded blastocysts was not significantly different from that by the other two methods. The birth rate of cloned pigs increased in the CHX group, though the rate was not significantly different from Ele. The effects of season on developmental rate of the porcine PA embryos and birth rate of cloned pigs were also examined in our study. Porcine oocytes collected in the spring had higher developmental capabilities than those collected in the winter. However, no difference in birth rate of the cloned pigs was found between the oocytes collected in the two seasons. The results obtained from PA and NT embryos, following different activation methods, were inconsistent, suggesting that activation mechanisms are dissimilar in PA and NT embryos. Although the chemical activation in our study leads to an elevation of the blastocyst rate, it does not improve the oocyte’s molecular programming and so does not significantly improve the efficiency of producing cloned pig births. Supported by National Key Basic Research and Development Program (China of Grant No. G200000161).  相似文献   

19.
The importance of obtaining stem cells through alternative methods has increased progressively in the recent years due to the potential role that embryonic stem (ES) cells play in the field of regenerative medicine. In this regard, generation of parthenogenetic blastocysts allows the production of ethic-free ES cells without the need to manipulate normal embryos. Our work was aimed at clarifying whether variations in the method adopted to generate diploid parthenogenetic blastocysts could determine differences in the quality of blastocysts produced. In vitro development of mouse oocytes activated with three protocols, using Sr2+ and cytochalasin for different time, was compared with that of in vivo fertilized embryos. We have evaluated the efficiency of blastocyst formation and analysed the expression pattern of the stemness markers OCT4, CDX2, and NANOG. Our results indicate that the yield of diploid parthenogenotes and the segregation of the stemness marker OCT4 in the developing blastocyst are influenced by the parthenogenetic protocol adopted. Particularly, even if all methods tested allowed the production of blastocysts in vitro, the correct segregation of OCT4 occurred only in blastocysts developed from oocytes concomitantly treated for 4 h with Sr2+ and cytochalasin D. Our results indicate that the protocol employed to develop parthenogenetic blastocysts in vitro affects the quality of cells in the inner cell mass.  相似文献   

20.
Parthenogenetic activation of the oocyte represents an important step in the somatic cloning. The aim of the present study was to evaluate the effectiveness (in term of in vitro development) of different methods of parthenogenetic activation of dromedary oocytes. Selected cumulus-oocytes-complexes (n=1264) collected by follicular aspiration from ovaries obtained postmortem were matured in vitro (IVM) for 30 h then divided randomly into seven groups and submitted to artificial activation. Two groups were preactivated with 25 microM of calcium ionophore (CaI) for 20 min then incubated for 4h with either 2mM 6-dimethylaminopurine (6-DMAP) (group 1, n=202) or with 10 microg/mL cycloheximide (CHX) (group 2, n=194). Group 3 (n=172) and group 4 (n=184), oocytes were pretreated with 5 microM ionomycin (Iono) for 5 min then incubated with either 2mM 6-DMAP or 10 microg/mL cycloheximide for 4h, respectively. Group 5 (n=161) and group 6 (n=155) oocytes were preactivated with electrical stimulation (ES) then activated with either 2mM 6-DMAP or 10 microg/mL cycloheximide for 4h, respectively. Group 7 (n=196) oocytes were submitted to in vitro fertilization (IVF) and served as a control. All groups containing oocytes were cultured in vitro following activation or IVF, at 38.5 degrees C under 5% CO(2) in air with >95% humidity. The in vitro development rates of dromedary oocytes exposed to 6-DMAP after CaI (61%), ES (74%) and the IVF group (71%) were similar and significantly greater (P<0.05) than other treatments (10% for group 2, 47% for group 3, 27% for group 4 and 41% for group 6). The blastocyst developmental rate was better (P<0.05) in parthenotes following activation with Iono/6-DMAP (21%) compared to activation with Iono/CHX (12%). However, all were less than that achieved in the IVF group (35%). We conclude that parthenogenetic activation of camel oocytes with 6-DMAP is more effective than activation with CHX for all pre-treatments tested (CaI, Iono or ES). The viability of activated (n=15) or IVF (n=10) hatched-dromedary embryos was examined by transfer to synchronized recipients. An embryonic vesicle was seen by ultrasonography at 15 days post transfer in four females (CaI/6-DMAP: 1/5; 20%, IVF: 3/10; 30%). The only pseudopregnancy obtained with an activated embryo resorbed at 25 days. One of the females receiving the IVF produced embryos aborted at 2 months and the other two females carried to term and gave birth to healthy calves (one female and one male). This study shows that artificial activation of dromedary oocytes with CaI/6-DMAP or ES/6-DMAP is more effective than other treatments in terms of in vitro embryo development. This provides efficient activation conditions which may lead to the development of the somatic cell nuclear transfer procedure in dromedary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号