首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
In experiments on cats we studied the pattern of EMG activity recorded from the flexors and extensors of the elbow joint and related to realization of flexor targeted operant movements of the forearm. The levels of stationary EMG activity generated by the flexors at a stabilized equilibrium position of the joint demonstrated no correlation with the values of joint angles. We suppose that this feature depends on manifestation of the hysteresis effects of muscle contraction. A target position was attained mostly due to the dynamic phases of muscle activity. The respective patterns of the movement-related activity of synergic muscles significantly differed; separate components related to leaving an equilibrium state with a certain acceleration and attaining a presettled equilibrium joint angle could be differentiated in this activity. Final positions of the forearm could be significantly different at equal levels of the stationary EMG activity generated during stabilization of these positions; they depended on specificities in the time course of dynamic phase of the activity (in particular, on the time of activity decay to a stationary level). We conclude that the movement of a limb link from one equilibrium position to another is mostly controlled via coordination of the dynamic phase of muscle activity.  相似文献   

2.
We studied in humans interrelations between the kinematic characteristics of targeted movements of the arm and current levels of EMG of the muscles providing these movements; the movements were relatively slow, and the attained joint angle was held for a time. The EMG level was considered a correlate of the level of integral motor commands (efferent activity of the respective motoneuronal pools). Application of low-amplitude non-inertial loadings, directed against the forces developed by one or another muscle group, allowed us to provide realization of targeted movements exclusively by the activity of this muscle group, without Involvement of the antagonists. It was demonstrated that the target equilibrium joint angle is reached synchronously with the dynamic phase of EMG activity, before the latter reaches a stationary level. The structure of the dynamic EMG phase itself is complex; in most cases it is split into several components. The dependence between the joint angle and amplitude of the EMG stationary phase is rather complex and variable, and usually it is difficult to predict the characteristics of this phase based on simple biomechanical considerations. There are proofs that at the performance of the studied movements and maintaining a target position there are some components in the mechanical muscle activity, which are not controlled by the motor commands. Thus, the stationary level of a motor command represents only one of several factors responsible for attaining and maintaining a target equilibrium position. Establishing this position is provided, first of all, by interaction of dynamic components of the motor commands to different muscles. Our results show that the attempts to interpret the processes of control of targeted movements on the basis of modifications of the equilibrium point hypothesis are inadequate; these data are in better compliance with the concept of impulse-temporal control; at their interpretation it is also necessary to take more thoroughly into account nonlinear properties of the muscle reactions.  相似文献   

3.
Relations between the kinematic parameters of slow (non-ballistic) targeted extension movements in the elbow joint of humans and characteristics of the movement-related EMG activity in the two heads of the m. triceps brachii were analyzed. Test movements were performed under conditions of application of non-inertional external loadings directed toward flexion. It was shown that the movement-related EMG activity of the elbow extensors, similarly to what was observed in the flexors at flexion movements with the same parameters, demonstrates a complex structure and includes dynamic and stationary phases. In the former phase, in turn, initial and main components can be differentiated. The rising edge and decay of the main component of the dynamic extensor EMG phase could be approximated by exponential functions; this component was never split into a few subcomponents. Dependences between the amplitudes of m. triceps brachii EMG phases and the amplitude of the movement (or external loading) were, as a rule, nonlinear but monotonic. An increase in the test movement velocity led to an increase in the rate of rise of the rising edge of the dynamic EMG phase, while an increment in the amplitude was less significant. Under the used test conditions, the activity of the elbow extensors was usually accompanied by some coactivation of the antagonists (m. biceps brachii). It is concluded that motor commands coming to the elbow extensors at performance of the extension test movements differ from motor commands to the flexors at analogous flexion test movements by a simpler structure and more tonic pattern. Biomechanical specificities of fixation of the mentioned muscle groups to the arm bones (stability of the moment for application of the extensor force under conditions of changing the joint angle vs variable moment of the flexor force) are considered one of the main reasons for such specificity of the patterns of the extensor and flexor motor commands.  相似文献   

4.
The single-joint voluntary plantar flexion in the ankle joint of humans was tested with an external load perturbation consisting of two opposite sinus half-waves. Pronounced manifestations of hysteresis were found in the dependence of the joint angle on the external load torque. In particular, the hysteresis displayed itself as an increase in joint stiffness following changes in the direction of movement. It led to the ambiguity of the equilibrium values of the joint angle. With goal-directed voluntary single-joint flexion and extension movements under isotonic conditions due to the corresponding changes in activation of flexor muscles only (without the activation of extensors), the hysteresis manifested itself as the uncertainty of the joint-angle dependence on the efferent activity coming to flexors during movement phases with varying prehistory. The importance of sensory information for the mechanism compensating hysteresis effects was demonstrated. The possible ways of regulation of efferent activity of the motoneuronal pools generating central motor commands in the presence of hysteresis of muscle contraction are discussed.Neirofiziologiya/Neurophysiology, Vol. 26, No. 2, pp. 83–90, March–April, 1994.  相似文献   

5.
We studied coordination of central motor commands (CMCs) coming to the muscles that flex and extend the shoulder and elbow joints in the course of generation of voluntary isometric efforts of different directions by the forearm. Dependences of the characteristics of these commands on the direction of the effort and rate of its generation were analyzed. Amplitudes of rectified and averaged EMGs recorded from a number of shoulder belt and shoulder muscles were considered correlates of the CMC intensity. The development of the effort of a given direction and rate of rise was realized in the horizontal-plane operational space; the arm position corresponded to the 30 deg angle in the shoulder joint (external angle with respect to the frontal plane) and 90 deg angle in the elbow joint. We plotted sector diagrams of the relative changes in the level of dynamic and stationary phases of EMG activity of the studied muscles for the entire set of directions of the efforts generated with different rates of rise. In the course of formation of rapid two-joint isometric efforts, realization of nonsynergic motor tasks (extension of one joint and flexion of another one, and vice versa) required significant activation of muscles of different functional directions for both joints. Time organization of EMG activity of extensors and flexors of the shoulder and elbow joints related to the maximum and relatively rapid generation of the effort (rise time 0.12 to 0.13 and 0.25 sec, respectively) was rather complex and included dynamic and stationary phases. With these time parameters of generation of the efforts (both flexion and extension), the appearance at the stationary effort of 40 N was controlled based on coordinated interaction of dynamic phases of the activation of agonistic and antagonistic muscles. It is concluded that CMCs coming to extensors and flexors of both joints upon generation of rapid isometric efforts are rather similar in their parameters to those under conditions of realization of the forearm movements in the space in an isotonic mode.  相似文献   

6.
Contribution of the processes of central preprograming of an equilibrium target position of the limb link was studied by testing two variants of motor task in humans. In the first variant, the tested person could obtain visual information about the target position before the movement initiation. In the second variant, such information initially was absent and was presented only in the course of the movement performance. It has been shown that in both variants the pattern of EMG activity of flexor muscles, which realize the movement (and, respectively, the pattern of motor commands, i.e., efferent activity of spinal motoneurons) demonstrated no fundamental differences. Therefore, it can be supposed that the attainment of a target level in both cases was preprogramed only to a limited extent; more probably, it was provided by successive current control of the limb link position. This control is based, first of all, on dynamic changes of the control signals. In general, data of the experiments are in agreement with the impulse—temporal hypothesis of control of targeted movements.  相似文献   

7.
Healthy subjects underwent analysis for positioning accuracy. The flexion-extension movements in the ankle and elbow joints performed without visual control were studied. The movements were produced by flexor muscles against small background loading (extensors were inactive). The subject was asked to memorize a certain target value of the joint angle reached under visual guidance in the phase of flexor contraction. After the flexion- (additional activation of the flexors) or extension-directed movement (relaxation of these muscles) the subject was asked to restore the target level from memory, without visual guidance. In the first case, when the target level was finally approached due to the flexor relaxation, a systematic overshoot of the target joint angle was observed. In the second case, when the target level was finally approached due to the additional activation of the flexors after their temporal relaxation, the positioning was much more accurate.Neirofiziologiya/Neurophysiology, Vol. 26, No. 2, pp. 91–98, March–April, 1994.  相似文献   

8.
Most work examining muscle function during anuran locomotion has focused largely on the roles of major hind limb extensors during jumping and swimming. Nevertheless, the recovery phase of anuran locomotion likely plays a critical role in locomotor performance, especially in the aquatic environment, where flexing limbs can increase drag on the swimming animal. In this study, I use kinematic and electromyographic analyses to explore the roles of four anatomical flexor muscles in the hind limb of Bufo marinus during swimming: m. iliacus externus, a hip flexor; mm. iliofibularis and semitendinosus, knee flexors; and m. tibialis anticus longus, an ankle flexor. Two general questions are addressed: (1) What role, if any, do these flexors play during limb extension? and (2) How do limb flexors control limb flexion? Musculus iliacus externus exhibits a large burst of EMG activity early in limb extension and shows low levels of activity during recovery. Both m. iliofibularis and m. semitendinosus are biphasically active, with relatively short but intense bursts during limb extension followed by longer and typically weaker secondary bursts during recovery. Musculus tibialis anticus longus becomes active mid way through recovery and remains active through the start of extension in the next stroke. In conclusion, flexors at all three joints exhibit some activity during limb extension, indicating that they play a role in mediating limb movements during propulsion. Further, recovery is controlled by a complex pattern of flexor activation timing, but muscle intensities are generally lower, suggesting relatively low force requirements during this phase of swimming.  相似文献   

9.
The purpose of this study was to investigate the relationships between the ankle joint angle and maximum isometric force of the toe flexor muscles. Toe flexor strength and electromyography activity of the foot muscles were measured in 12 healthy men at 6 different ankle joint angles with the knee joint at 90 deg in the sitting position. To measure the maximum isometric force of the toe flexor muscles, subjects exerted maximum force on a toe grip dynamometer while the activity levels of the intrinsic and extrinsic plantar muscles were measured. The relation between ankle joint angle and maximum isometric force of the toe flexor muscles was determined, and the isometric force exhibited a peak when the ankle joint was at 70–90 deg on average. From this optimal neutral position, the isometric force gradually decreased and reached its nadir in the plantar flexion position (i.e., 120 deg). The EMG activity of the abductor hallucis (intrinsic plantar muscle) and peroneus longus (extrinsic plantar muscle) did not differ at any ankle joint angles. The results of this study suggest that the force generation of toe flexor muscles is regulated at the ankle joint and that changes in the length-tension relations of the extrinsic plantar muscle could be a reason for the force-generating capacity at the metatarsophalangeal joint when the ankle joint angle is changed.  相似文献   

10.
Coactivation of knee flexors during knee extension assists in joint stability by exerting an opposing torque to the anterior tibial displacement induced by the quadriceps. This opposing torque is believed to be generated by eccentric muscle actions that stiffen the knee, thereby attenuating strain to joint ligaments, particularly the anterior cruciate ligament (ACL). However, as the lengths of knee muscles vary with changes in joint position, the magnitude of flexor/extensor muscle force coupling may likewise vary, possibly affecting the capacity for active knee stabilization. The purpose of this study was to assess the effect of changes in movement speed and joint position on eccentric/concentric muscle action relationships in the knees of uninjured (UNI) and post-ACL-surgery (INJ) subjects (n = 14). All subjects were tested for maximum eccentric and concentric torque of the contralateral knee flexors and extensor muscles at four isokinetic speeds (15 degrees-60 degrees x s(-1)) and four joint position intervals (20 degrees-60 degrees of knee flexion). Eccentric flexor torque was normalized to the percentage of concentric flexor torque generated at each joint position interval for each speed tested (flexor E-C ratio). In order to estimate the capacity of the knee flexors to resist active knee extension, the eccentric-flexor/concentric-extensor ratios were also computed for each joint position interval and speed (flexor/extensor E-C ratio). The results revealed that eccentric torque surpassed concentric torque by 3%-144% across movement speeds and joint position intervals. The magnitude of the flexor E-C ratio and flexor/extensor E-C increased significantly with speed in both groups of subjects (P < 0.05) and tended to rise with muscle length as the knee was extended; peak values were generated at the most extended joint position (20 degrees-30 degrees). Although torque development patterns were symmetrical between the contralateral limbs in both groups, between-group comparisons revealed significantly higher flexor/extensor E-C ratios for the INJ group compared to the UNI group (P < 0.05), particularly at the fastest speed tested (60 degrees x s(-1)). The results indicate that joint position and movement speed influence the eccentric/concentric relationships of knee flexors and extensors. The INJ subjects appeared to accommodate to surgery by developing the eccentric function of their ACL and normal knee flexors, particularly at higher speeds and at more extended knee joint positions. This may assist in the dynamic stabilization of the knee at positions where ACL grafts have been reported to be most vulnerable to strain.  相似文献   

11.
In many activities the knee joint flexes and extends actively with the involvement of both knee extensor and flexor muscle groups. Consequently the examination of the muscle activity during reciprocal movements may provide useful information on the function of these two muscle groups during fatigued conditions. Therefore, the purpose of this study was to examine the activity of antagonist muscles during a reciprocal isokinetic fatigue test of the knee extensors and flexors. Fifteen healthy pubertal males (age 13.8+/-0.8 years) performed 22 maximal isokinetic concentric efforts of the knee extensors at 60 degrees s(-1). The EMG activity of vastus medialis (VM), vastus lateralis (VL) and biceps femoris (BF) was recorded using surface electrodes. The motion ranged from 100 to 0 degrees of knee flexion. The average moment and average EMG (AEMG) at 10-30 degrees, 31-50 degrees, 51-70 degrees and 71-90 degrees angular position intervals were calculated for each repetition. Twenty efforts were further analyzed. Two-way repeated measures analysis of variance (ANOVA) tests indicated a significant decline of moment during the test (p<0.025). The VM and VL AEMG at longer muscle lengths increased significantly as the test progressed whereas the AEMG at short muscle lengths (10-30 degrees ) did not significantly change. The agonist AEMG of BF during the first repetition demonstrated a significant increase after the ninth repetition (p<0.025). The antagonist AEMG of all muscles did not change significantly during the test. These results indicate that there is consistent antagonist activity during both extension and flexion phases of an isokinetic reciprocal fatigue test. It can be concluded that during an isokinetic reciprocal fatigue test, both knee extensors and flexors are fatigued. However, this condition does not have a significant effect on the EMG patterns of these muscles when acting as antagonists during the test.  相似文献   

12.
In unloading condition the degree of activation of the central stepping program was investigated during passive leg movements in healthy subjects, as well as the excitability of spinal motoneurons during passive and voluntary stepping movement. Passive stepping movements with characteristics maximally approximated to those during voluntary stepping were accomplished by experimenter. The comparison of the muscle activity bursts during voluntary and imposed movements was made. In addition to that the influence of artificially created loading onto the foot to the leg movement characteristics was analyzed. Spinal motoneuron excitability was estimated by means of evaluation of amplitude modulation of the soleus H-reflex. The changes of H-reflexes under the fixation of knee or hip joints were also studied. In majority of subjects the passive movements were accompanied by bursts of EMG activity of hip muscles (and sometimes of knee muscles), which timing during step cycle was coincided with burst timing of voluntary step cycle. In many cases the bursts of EMG activity during passive movements exceeded activity in homonymous muscles during voluntary stepping. The foot loading imitation exerted essential influence on distal parts of moving extremity during voluntary as well passive movements, that was expressed in the appearance of movements in the ankle joint and accompanied by emergence and increasing of phasic EMG activity of shank muscles. The excitability of motoneurons during passive movements was greater then during voluntary ones. The changes and modulation of H-reflex throughout the step cycle without restriction of joint mobility and during exclusion of hip joint mobility were similar. The knee joint fixation exerted the greater influence. It is supposed that imposed movements activate the same mechanisms of rhythm generation as a supraspinal commands during voluntary movements. In the conditions of passive movements the presynaptic inhibition depend on afferent influences from moving leg in the most degree then on central commands. It seems that afferent inputs from pressure receptors of foot in the condition of "air-stepping" actively interact with central program of stepping and, irrespective of type of the performing movements (voluntary or passive), form the final pattern activity.  相似文献   

13.
The influence of adequate vestibular stimulation occurring as the animal tilted around longitudinal axis on locomotor activity of the forelimb muscles was investigated during experiments on guinea pigs decerebrated at precollicular level. Locomotor activity was produced by electrical stimulation of the mesencephalic locomotor region. An increase in extensor EMG activity was observed when the animal shifted its weight onto the limb ipsilateral to the tilt during the "standing" phase and a reduction in flexor activity during the swing phase. The reverse of these changes was seen in the activity of antagonist muscles in the contralateral limb. It was found that changes in muscular locomotor activity exceeded those observed during animal movements by 60–40° in the extensors and 40–20° in the flexors during cyclic sinusoidal tilting in the 0.02–0.4 Hz range. The mechanisms underlying vestibular control of locomotor activity are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 534–541, July–August, 1987.  相似文献   

14.
One of the purposes of footwear is to assist locomotion, but some footwear types seem to restrict natural foot motion, which may affect the contribution of ankle plantar flexor muscles to propulsion. This study examined the effects of different footwear conditions on the activity of ankle plantar flexors during walking. Ten healthy habitually shod individuals walked overground in shoes, barefoot and in flip-flops while fine-wire electromyography (EMG) activity was recorded from flexor hallucis longus (FHL), soleus (SOL), and medial and lateral gastrocnemius (MG and LG) muscles. EMG signals were peak-normalised and analysed in the stance phase using Statistical Parametric Mapping (SPM). We found highly individual EMG patterns. Although walking with shoes required higher muscle activity for propulsion than walking barefoot or with flip-flops in most participants, this did not result in statistically significant differences in EMG amplitude between footwear conditions in any muscle (p > 0.05). Time to peak activity showed the lowest coefficient of variation in shod walking (3.5, 7.0, 8.0 and 3.4 for FHL, SOL, MG and LG, respectively). Future studies should clarify the sources and consequences of individual EMG responses to different footwear.  相似文献   

15.
This study compared the effect of repetitive work in thermoneutral and cold conditions on forearm muscle electromyogram (EMG) and fatigue. We hypothesize that cold and repetitive work together cause higher EMG activity and fatigue than repetitive work only, thus creating a higher risk for overuse injuries. Eight men performed six 20-min work bouts at 25 degrees C (W-25) and at 5 degrees C while exposed to systemic (C-5) and local cooling (LC-5). The work was wrist flexion-extension exercise at 10% maximal voluntary contraction. The EMG activity of the forearm flexors and extensors was higher during C-5 (31 and 30%, respectively) and LC-5 (25 and 28%, respectively) than during W-25 (P < 0.05). On the basis of fatigue index (calculated from changes in maximal flexor force and flexor EMG activity), the fatigue in the forearm flexors at the end of W-25 was 15%. The corresponding values at the end of C-5 and LC-5 were 37% (P < 0.05 in relation to W-25) and 20%, respectively. Thus repetitive work in the cold causes higher EMG activity and fatigue than repetitive work in thermoneutral conditions.  相似文献   

16.
The fraction of crosstalk was examined from the surface EMG signals collected from digit- and wrist-dedicated flexors with a blind signal separation (BSS) algorithm. Six participants performed static power grip tasks in a neutral posture at four different exertion levels of 25%, 50%, 75%, and 100% MVC. The signals were collected from the flexor digitorum superficialis, flexor digitorum profundus, flexor carpi radialis, palmaris longus, and flexor carpi ulnaris using a bipolar electrode configuration. The percentage of root mean square (RMS) was used as an amplitude-based index of crosstalk by normalizing the signals including crosstalk to those excluding crosstalk by the BSS algorithm for each %MVC exertion. The peak R2 value of a cross-correlation function was also calculated as a correlation-based index of crosstalk for a group of forearm flexors by force level and algorithm application. The fraction of crosstalk ranged from 32% to 50% in the wrist-dedicated flexors and from 11% to 25% in the digit-dedicated flexors. Since surface EMG signals had such high levels of crosstalk, reduction methods like the BSS algorithm should be employed, as the BSS significantly reduced crosstalk in the forearm flexors 33% over all muscles and exertion levels. Thus, it is recommended that BSS be utilized to reduce crosstalk for the digit- and wrist-dedicated flexors during gripping tasks.  相似文献   

17.
18.
Electromyographic (EMG) activities of three tail muscles, the extensor caudae lateralis (ECL), abductor caudae externus (ACE), and flexor caudae longus (FCL), were recorded bilaterally in seven adult dogs during walking, trotting, and galloping on a treadmill. Each dog's movements were recorded with a 16 mm high-speed camera system, and angular movements of the tail were analyzed. During walking and trotting, reciprocal EMG bursts were observed between right and left tail muscles and corresponded with lateral movements of the tail. The tonic discharges that were observed in ECL and FCL seemed to maintain the position of the tail. During galloping, synchronized EMG activity of all tail muscles produced reactive torques to counter those generated by cyclic limb movements and kept the tail in a stable position. These results suggest that tail movements are important in maintaining body balance during locomotion in the dog. © 1993 Wiley-Liss, Inc.  相似文献   

19.
When falling from an inverted position, EMG activities of tail muscles (the m. extensor caudae lateralis, m. abductor caudae externus, m. flexor caudae longus) and tail movements were recorded in 7 long-tailed adult cats. After being released from an elevated position, cat rotates the tail in a reverse direction to rotation of other parts of the cat's body then lands on four legs. Rotation of the tail was started by EMG activities of the tail muscles on one side. Both synchronized and alternating groups of discharge occur between its left and right side, while extensor and flexor movements and displacements of its tail appear in the air. After transection of ventral roots from the coccygeal spinal segments innervating tail muscles, cats often fail to land on four legs. These facts suggest that that tail movements control body balance in the air when falling from an inverted position.  相似文献   

20.
The activity of certain muscles that cross the elbow joint complex (EJC) are affected by forearm position and forearm movement during elbow flexion/extension. To investigate whether these changes are based on the musculoskeletal geometry of the joint, a three-dimensional musculotendinoskeletal computer model of the EJC was used to estimate individual muscle activity in multi-degree-of-freedom (df) rapid (ballistic) elbow movements. It is hypothesized that this model could reproduce the major features of elbow muscle activity during multi-df elbow movements using dynamic optimal control theory, given a minimum-time performance criterion. Results from the model are presented and verified with experimental kinematic and electromyographic data from movements that involved both one-df elbow flexion/extension and two-df flexion/extension with forearm pronation/supination. The model demonstrated how the activity of particular muscles is affected by both forearm position and movement, as measured in these experiments and as previously reported by others. These changes were most evident in the flexor muscles and least evident in the extensor muscles. The model also indicated that, for specific one- and two-df movements, activating a muscle that is antagonistic or noncontributory to the movement could reduce the movement time. The major features of muscle activity in multi-df elbow movements appear to be highly dependent on the joint's musculoskeletal geometry and are not strictly based on neural influences or neuroanatomical substrates. Received: 9 May 1997 / Accepted in revised form: 8 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号