首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because optimal overload-induced skeletal muscle hypertrophy requires ANG II, we aimed to determine the effects of blocking ANG II production [via angiotensin-converting enzyme (ACE) inhibition] on potential mediators of hypertrophy in overloaded skeletal muscle, namely, myonuclear addition and fibroblast content. In a 2 x 2 design, adult (200-225 g) female Sprague-Dawley rats were placed into one of four groups (n = 8/group): 7-day skeletal muscle overload, sham operation, 7-day skeletal muscle overload with ACE inhibition, or sham operation with ACE inhibition. Functional overloads of the plantaris and soleus muscles were produced via bilateral surgical ablation of the synergistic gastrocnemius muscle, and ACE inhibition was accomplished by the addition of the ACE inhibitor enalapril maleate to the animals' daily drinking water (0.3 mg/ml). Myonuclear addition and extrasarcolemmal nuclear proliferation, as measured by in vivo 5-bromo-2'-deoxyuridine labeling, were significantly (P < or = 0.05) increased by overload in both the slow-twitch soleus and fast-twitch plantaris muscles. Furthermore, ACE inhibition attenuated these overload-induced increases in the soleus muscle but not in the plantaris muscle. However, the effect of ACE inhibition on soleus extrasarcolemmal nuclei was not likely due to differences in fibroblast content because overload elicited significant increases in vimentin-positive areas in soleus and plantaris muscles, and these areas were unaffected by ACE inhibition in either muscle. There was no effect of ACE inhibition on any measure in sham-operated muscles. Collectively, these data indicate that ANG II may mediate the satellite cell response to overload in slow-twitch soleus but not in fast-twitch plantaris muscles and that this effect may occur independently of changes in fibroblast content.  相似文献   

2.
Testosterone and muscle hypertrophy in female rats   总被引:1,自引:0,他引:1  
The effects of chronic treatment with testosterone propionate on compensatory muscle hypertrophy secondary to synergist removal were studied in female rats. Synergist removal resulted in a significant (2-fold) increase in muscle wet weight, with no changes in protein concentration. As reported previously, oxidation of [2-14C]pyruvate to 14CO2 was significantly decreased in hypertrophic muscles. In addition, malate dehydrogenase and lactate dehydrogenase activities were significantly decreased in overloaded muscles on a wet weight basis but not on the basis of noncollagen protein. These data suggest that specific metabolic adaptations may occur in response to overload of muscle. Administration of testosterone propionate in subcutaneously implanted Silastic capsules resulted in a 20-fold increase in serum testosterone levels. This treatment had no effect on body weight, muscle weight, pyruvate oxidation, or malate and lactate dehydrogenase activities in both control and hypertrophic muscles, although there was an effect on the noncollagen protein content of overloaded muscles. These results do not support the hypothesis that androgens, in conjunction with weight-bearing exercise in female subjects, are effective in increasing muscle mass or function in female subjects.  相似文献   

3.
Spangenburg EE  Booth FW 《Cytokine》2006,34(3-4):125-130
Cytokines and growth factors are thought to contribute to skeletal muscle hypertrophy. Leukemia inhibitory factor (LIF), a cytokine, enhances skeletal muscle regeneration; however the role of LIF in skeletal muscle hypertrophy remains uncertain. We examined the hypertrophic ability of the plantaris and soleus muscles in wild-type mice (WT) and LIF knock-out mice [LIF(-/-)] in response to increased mechanical load. Using the functional overload model to induce increases in mechanical load on the plantaris and soleus muscle, WT mice demonstrated increases in plantaris and soleus mass after 7, 21, and 42 days of loading. However, the LIF(-/-) mice had no significant increases in plantaris muscle mass at any time point, while the soleus muscle exhibited a delayed hypertrophic response. Systemic delivery of LIF to the LIF(-/-) mice returned the hypertrophic response to the same levels as the WT mice after 21 days of functional overload. These data demonstrate for the first time that LIF expression in loaded skeletal muscle is critical for the development of skeletal muscle hypertrophy in the functional overload model.  相似文献   

4.
The anatomic size of the capillary-to-fiber (C/F) interface plays an important role in O(2) flux from blood to tissue by determining the surface area available for diffusion and is maintained in relative proportion to fiber mitochondrial volume across a wide range of muscle aerobic capacity. In the present study, we examined an estimate of the anatomic size of the C/F interface [the quotient of the individual C/F ratio and fiber perimeter, C/F perimeter exchange (CFPE) index] and fiber oxidative capacity in different skeletal muscles, or muscle regions, to test the hypothesis that capillarization would be maintained in relative excess of reduced fiber oxidative capacity in aged muscles. The right gastrocnemius, plantaris, and soleus muscles from young adult (8 mo old) and late middle-aged (28-30 mo old) Fischer 344 x Brown Norway F1 hybrid rats were excised for evaluation of flux through electron transport chain complexes I-III and/or morphometric estimation of capillarization. Muscle mass was lower in the gastrocnemius muscles of the older animals (2,076 +/- 32 vs. 1,825 +/- 47 mg in young adult vs. late middle-aged, respectively; mean +/- SE) but not the plantaris or soleus muscles. Fibers were smaller in the white region of gastrocnemius muscles but larger in the red region of gastrocnemius muscles of the older animals. There was no difference in the number of capillaries around a fiber, the individual C/F ratio, or the CFPE index between groups for any muscle/region, whereas flux through complexes I-III was reduced by 29-43% in late middle-aged animals. Thus the greater quotient of indexes of anatomic capillarity (individual C/F ratio or CFPE index) and fiber oxidative capacity in soleus and the white region of gastrocnemius muscles, but not in the red region of gastrocnemius muscles of the older animals, shows that anatomic capillarity is maintained in relative excess of oxidative capacity in some muscle regions in late middle-aged rats.  相似文献   

5.
14CO2 production is no adequate measure of [14C]fatty acid oxidation   总被引:3,自引:0,他引:3  
Palmitate oxidation was comparatively assayed in various cell-free and cellular systems by 14CO2 production and by the sum of 14CO2 and 14C-labeled acid-soluble products. The 14CO2 production rate was dependent on incubation time and amount of tissue in contrast to the total oxidation rate. The 14CO2 contribution to the oxidation rate of [1-14C]palmitate varied with homogenates from 1% with rat liver to 28% with rat kidney and amounted to only 2-4% with human muscles. With cellular systems the 14CO2 contribution varied between 20% in human fibroblasts and 70% in rat muscles and myocytes. Addition of cofactors increased the oxidation rate, but decreased the 14CO2 contribution. Various conditions appeared also to influence to a different extent the 14CO2 production and the total oxidation rate with rat tissue homogenates and with rat muscle mitochondria. Incorporation of radioactivity from [1-14C]palmitate into protein was not detectable in cell-free systems and only 2-3% of the sum of 14CO2 and 14C-labeled acid-soluble products in cellular systems. Assay of 14CO2 and 14C-labeled acid-soluble products is a much more accurate and sensitive estimation of fatty acid oxidation than assay of only 14CO2.  相似文献   

6.
Although the soleus muscle comprises only 6% of the ankle plantar flexor mass in the rat, a major role in stance and walking has been ascribed to it. The purpose of this study was to determine if removal of the soleus muscle would result in adaptations in the remaining gastrocnemius and plantaris muscles due to the new demands for force production imposed on them during stance or walking. A second purpose was to determine whether the mass or the fiber type of the muscle(s) removed was a more important determinant of compensatory adaptations. Male Sprague-Dawley rats underwent bilateral removal of soleus muscle, plantaris muscle, or both muscles. For comparison, compensatory hypertrophy was induced in soleus and plantaris muscles by gastrocnemius muscle ablation. After forty days, synergist muscles remaining intact were removed. Mass, and oxidative, glycolytic, and contractile enzyme activities were determined. Despite its role in stance and slow walking, removal of the soleus muscle did not elicit a measurable alteration in muscle mass, or in citrate synthase, lactate dehydrogenase, or myofibrillar ATPase activity in gastrocnemius or plantaris muscles. Similarly, removal of the plantaris muscle, or soleus and plantaris muscles, had no effect on the gastrocnemius muscle, suggesting that this muscle was able to easily meet the new demands placed on it. These results suggest that amount of muscle mass removed, rather than fiber type, is the most important stimulus for compensatory hypertrophy. They also suggest that slow-twitch motor units in the gastrocnemius muscle play an important role during stance and locomotion in the intact animal.  相似文献   

7.
Both ammonia and beta-methylene-DL-aspartate (beta-MA), an irreversible inhibitor of aspartate aminotransferase activity and thus of the malate-aspartate shuttle, were found previously to decrease oxidative metabolism in cerebral cortex slices. In the present work, the possibility that ammonia and beta-MA affect energy metabolism by a common mechanism (i.e., via inhibition of the malate-aspartate shuttle) was investigated using primary cultures of neurons and astrocytes. Incubation of astrocytes for 30 min with 5 mM beta-MA resulted in a decreased production of 14CO2 from [U-14C]glucose, but did not affect 14CO2 production from [2-14C]pyruvate. Conversely, incubation of astrocytes with 3 mM ammonium chloride resulted in decreased 14CO2 production from [2-14C]pyruvate, but 14CO2 production from [U-14C]glucose was not significantly affected. Ammonium chloride had no significant effect on 14CO2 production from either [U-14C]glucose or [2-14]pyruvate by neurons. However, incubation of neurons with beta-MA or beta-MA plus ammonium chloride resulted in a approximately 45% decrease of 14CO2 production from both [U-14C]glucose and [2-14C]pyruvate. A 2-h incubation of astrocytes with beta-MA resulted in no change in ATP levels, but a 35% decrease in phosphocreatine. Similar treatment of neurons resulted in greater than 50% decrease in ATP, but had little effect on phosphocreatine. beta-MA also caused a decrease in glutamate and aspartate content of neurons, but not of astrocytes. The different metabolic responses of neurons and astrocytes towards beta-MA were probably not due to a differential inhibition of aspartate aminotransferase which was inhibited by approximately 45% in astrocytes and by approximately 55% in neurons.  相似文献   

8.
After incubation of rat, pig and cattle skeletal muscle homogenates with [U-14C]leucine, 80.4%, 37.0% and 57.0% of radioactivity was found in the proteins, 9.4%, 58.7% and 40.9% in the lipids, and 10.2%, 4.3% and 2.1% in 14CO2. This suggests that along-side with utilization in protein synthesis, leucine plays an essential role in lipid synthesis in muscle tissues of agricultural animals. The contribution of [U-14C]leucine to lipogenesis with substrates is greater than that of [U-14C]acetate and [U-14C]glucose in cattle skeletal muscles in vitro and greater than that of [U-14C]acetate in pig muscle. The CO2 production during oxidation of the [U-14C]leucine carbohydrate chain is higher than that during [U-14C]glucose and [U-14C]palmitate oxidation in skeletal muscles of rat and pig. In skeletal muscles of all animal species under study [U-14C]acetate is oxidized far more intensively than the other substrates tested.  相似文献   

9.
The intracellular contents of sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), and chloride (Cl-) in rat hindlimb muscles (soleus, plantaris, white and red gastrocnemii) were measured by instrumental neutron activation analysis (INAA) and atomic absorption spectrophotometry (AAS). Muscle extracellular fluid volume (ECFV) was determined using [3H]mannitol, [14C]mannitol, [3H]polyethylene glycol (PEG, mol wt 900, PEG-900) or the chloride (Cl) method and intracellular fluid volume (ICFV) calculated. Rats were anesthetized with pentobarbital sodium. The muscles were biopsied, frozen in liquid nitrogen, freeze-dried, weighed, and transferred to vials for analysis. For a given muscle, ion contents measured by the two methods showed a consistent small difference which could not be explained. The PEG-900 space and the Cl method yielded a larger ECFV than did mannitol; it is concluded that PEG-900 and Cl overestimate ECFV. There were significant differences in total tissue water (TTW), ECFV, ICFV, and intracellular ion contents between the different muscle types. The fast glycolytic muscles (white gastrocnemius, plantaris) had lower TTW (758 ml/kg wet wt) and ECFV (6.5-8.5% TTW) but the highest ICFV; the soleus (slow oxidative fibers) had the highest TTW (766 ml/kg wet wt) and ECFV (10-15% TTW) but the lowest ICFV. The fast-twitch white gastrocnemius and plantaris muscles have a higher intracellular content of K+ and lower Na+ and Cl- than the slow-twitch soleus muscle. The technique of INAA provides a rapid and accurate means of determining intramuscular ion content in small samples of tissue.  相似文献   

10.
11.
Skeletal muscle mass declines with age, as does the potential for overload-induced fast-twitch skeletal muscle hypertrophy. Because 5'-AMP-activated protein kinase (AMPK) activity is thought to inhibit skeletal muscle protein synthesis and may therefore modulate muscle mass and hypertrophy, the purpose of this investigation was to examine AMPK phosphorylation status (a marker of AMPK activity) and its potential association with the attenuated overload-induced hypertrophy observed in aged skeletal muscle. One-week overload of fast-twitch plantaris and slow-twitch soleus muscles was achieved in young adult (8 mo; n = 7) and old (30 mo; n = 7) Fischer344 x Brown Norway male rats via unilateral gastrocnemius ablation. Significant (P < or = 0.05) age-related atrophy (as measured by total protein content) was noted in plantaris and soleus control (sham-operated) muscles. In fast-twitch plantaris muscles, percent hypertrophy with overload was significantly attenuated with age, whereas AMPK phosphorylation status as determined by Western blotting [phospho-AMPK (Thr172)/total AMPK] was significantly elevated with age (regardless of loading status). There was also a main effect of loading on AMPK phosphorylation status in plantaris muscles (overload > control). Moreover, a strong and significant negative correlation (r = -0.82) was observed between AMPK phosphorylation status and percent hypertrophy in the overloaded plantaris muscles of all animals. In contrast to the plantaris, overload-induced hypertrophy of the slow-twitch soleus muscle was similar between ages, and AMPK phosphorylation in this muscle was also unaffected by age or overload. These data support the possibility that an age-related elevation in AMPK phosphorylation may partly contribute to the attenuated hypertrophic response observed with age in overloaded fast-twitch plantaris muscle.  相似文献   

12.
Muscle fibre composition was compared among the proximal (25%), middle (50%) and distal (75%) regions of the muscle length to investigate whether compensatory overload by removal of synergists induces region-specific changes of fibre types in rat soleus and plantaris muscles. In addition, we evaluated fibre cross-sectional area in each region to examine whether fibre recruitment pattern against functional overload is nonuniform in different regions. Increases in muscle mass and fibre area confirmed a significant hypertrophic response in the overloaded soleus and plantaris muscles. Overloading increased the percentage of type I fibres in both muscles and that of type IIA fibres in the plantaris muscle, with the greater changes being found in the middle and distal regions. The percentage of type I fibres in the proximal region was higher than that of the other regions in the control soleus muscle. In the control plantaris muscle, the percentage of type I and IIA fibres in the middle region were higher than that of the proximal and distal regions. With regard to fibre size, type IIB fibre area of the middle and distal regions in the plantaris increased by 51% and 57%, respectively, with the greater changes than that of the proximal region (37%) after overloading. These findings suggest that compensatory overload promoted transformation of type II fibres into type I fibres in rat soleus and plantaris muscles, with the greater changes being found in the middle and distal regions of the plantaris muscle.  相似文献   

13.
1. The turnover rate of L-[1-14C]leucine was increased by 35% in lactating rats compared with virgin rats. Starvation or removal of pups (24 h) returned the value to that of the virgin rat. 2. Incorporation of L-[U-14C]leucine into lipid and protein of mammary glands of lactating rats in vivo increased 7-fold and 6-fold respectively compared with glands of virgin rats. Lactation caused no change in the incorporation of L-[U-14C]leucine into hepatic lipid and protein. 3. The production of 14CO2 from L[l-14C]leucine (in the presence of glucose) was similar in isolated acini from glands of fed (chow) and starved lactating rats. Feeding with a 'cafeteria' diet caused a slight decrease, and removal of pups a large decrease, in the oxidative decarboxylation of leucine. 4. Oxidation of L-[2-14C]leucine to 14CO2 was increased about 3-fold in acini from starved lactating rats or lactating rats fed on a 'cafeteria' diet compared with rats fed on a chow diet. Insulin decreased the formation of 14CO2 in all three situations. 5. Incorporation of L-[U-14C]- and [2-14C]-leucine into lipid was decreased in acini from starved lactating rats and lactating rats fed on a 'cafeteria' diet. Insulin tended to increase the conversion of [2-14C]leucine into lipid, but this was significant only in the case of the acini from 'cafeteria'-fed rats. 6. Experiments with (-)-hydroxycitrate indicate that the major route for conversion of leucine carbon into lipid in acini is via citrate translocation from the mitochondria. 7. The physiological implications of these findings are discussed.  相似文献   

14.
1. The oxidation of the three branched-chain amino acids was regulated in parallel fashion in rat tissues studied in vitro. 2. With 0.1 mM-[1-14C]isoleucine as substrate in the presence of 5.5 mM-glucose, 14CO2 production was 0.6 mumol/2 h per g in the aorta, 0.3 in peripheral nerve, 0.2 in muscle and 0.13 in spinal cord. 3. The ratio 14C oxidized/14C incorporated into proteins with 0.1 mM-[1-14C]leucine was 1.3 in hemidiaphragms, 3.3 in sciatic nerve and 1.0 in nerves undergoing Wallerian degeneration. Leucine oxidation decreased only slightly during degeneration, but protein synthesis doubled. 4. Hemidiaphragms incubated with [1-14C]leucine or 4-methyl-2-oxo[1-14C]pentanoate increased 14CO2 production 7-9-fold as substrate concentration was increased from 0.1 to 0.5 mM; under the same conditions 14CO2 production by nerves increased only 2-3-fold. 5. 2-Oxoglutarate stimulated the oxidation of the branched-chain amino acids by muscles and peripheral nerves and the oxidation of 4-methyl-2-oxopentanoate by hemidiaphragms but not by nerves. 6. Octanoate (0.1-1.0 mM) markedly stimulated the oxidation of branched-chain amino acids and of 4-methyl-2-oxopentanoate in hemidiaphragms, but inhibited oxidation of both by peripheral nerves and spinal cord. In aortas, oxidation of isoleucine (the only substance tested) was inhibited by octanoate. 7. The effects of octanoate and 2-oxoglutarate on leucine oxidation by hemidiaphragms were additive at low concentrations. When maximally stimulating concentrations of either agent were used, addition of the other was ineffective. 8. Pyruvate inhibited the oxidation of branched-chain amino acids and 4-methyl-2-oxopentanoate in all tissues tested. 9. Insulin did not affect the oxidation of 4-methyl-2-oxopentanoate by muscles or nerves. 10. The oxidative decarboxylation of the branched-chain alpha-oxo acids is suggested as a regulatory site of branched-chain amino acid oxidation. Differences in regulation between muscle on the one hand, and nerve and aorta on the other, are discussed.  相似文献   

15.
16.
Male hypophysectomized rats were initially assigned to a control or an overloaded group that underwent compensatory hypertrophy of plantaris muscles to steady-state levels following removal of synergistic musculature. Plantaris muscle mass of overloaded animals was higher than that of controls by 38% (391 +/- 8 vs 284 +/- 7 mg) and glucocorticoid cytosol specific binding concentrations, using [3H]triamcinolone acetonide (TA) as the labeled steroid, was also significantly higher in hypertrophied muscles (83.3 +/- 3.9 fmol . mg protein-1) than in control muscles 56.3 +/- 3.9 fmol . mg protein-1). Cortisone acetate (CA) was then administered daily subcutaneously in high, 100 mg; intermediate, 10 mg; or low, 1.0 mg . kg-1 body wt doses. Groups of rats were killed after 1/4, 2 days and 7 days. Absolute muscle mass losses after 7 days of CA treatment were approx 80 mg with high doses and 60 mg with intermediate doses in both hypertrophied and control muscles. The low CA dose did not produce atrophy. The absolute depletion of [3H]TA binding activity with CA treatment was always greater in hypertrophied muscles of high and intermediate dose treated than those of their respective controls, but TA binding capacities remained higher in hypertrophied muscles than in controls at almost all time points in all treatment groups. Unlike previous findings in which the simultaneous initiation of overload prevented glucocorticoid induced muscle wasting, no resistance to the effect of CA treatment was observed when treatment was begun after hypertrophy had occurred.  相似文献   

17.
In theory, the complete oxidation to CO2 of amino acids that are metabolized by conversion into tricarboxylic acid-cycle intermediates may proceed via their conversion into acetyl-CoA. The possible adrenergic modulation of this oxidative pathway was investigated in isolated hemidiaphragms from 40 h-starved rats. Adrenaline (5.5 microM), phenylephrine (0.49 mM) and dibutyryl cyclic AMP (10 microM) inhibited 14CO2 production from 3 mM-[U-14C]valine by 35%, 28% and 19% respectively. At the same time, these agents stimulated glycogen mobilization (measured as a decrease in glycogen content) and glycolysis (measured as lactate release). Adrenaline, phenylephrine and dibutyryl cyclic AMP did not inhibit 14CO2 production from 3 mM-[U-14C]aspartate or 3 mM-[U-14C]glutamate, although, as in the presence of valine, the agents stimulated glycogen mobilization and glycolysis. The rate of proteolysis (measured as tyrosine release in the presence of cycloheximide) was not changed by adrenaline. The data indicate that the adrenergic inhibition of 14CO2 production from [U-14C]valine was not a consequence of radiolabel dilution. Inhibition was apparently specific for branched-chain amino acid metabolism in that the adrenergic agonists also inhibited 14CO2 production from [1-14C]valine, [1-14C]leucine and [U-14C]isoleucine. Since 14CO2 production from the 1-14C-labelled substrates is a specific measure of decarboxylation in the reaction catalysed by the branched-chain 2-oxo acid dehydrogenase complex, it is at this site that the adrenergic agents are concluded to act.  相似文献   

18.
Heat stress inhibits skeletal muscle hypertrophy   总被引:1,自引:1,他引:0       下载免费PDF全文
Heat shock proteins (Hsps) are molecular chaperones that aid in protein synthesis and trafficking and have been shown to protect cells/tissues from various protein damaging stressors. To determine the extent to which a single heat stress and the concurrent accumulation of Hsps influences the early events of skeletal muscle hypertrophy, Sprague-Dawley rats were heat stressed (42 degrees C, 15 minutes) 24 hours prior to overloading 1 plantaris muscle by surgical removal of the gastrocnemius muscle. The contralateral plantaris muscles served as controls. Heat-stressed and/or overloaded plantaris muscles were assessed for muscle mass, total muscle protein, muscle protein concentration, Type I myosin heavy chain (Type I MHC) content, as well as Hsp72 and Hsp25 content over the course of 7 days following removal of the gastrocnemius muscle. As expected, in non-heat-stressed animals, muscle mass, total muscle protein and MHC I content were significantly increased (P < 0.05) following overload. In addition, Hsp25 and Hsp72 increased significantly after 2 and 3 days of overload, respectively. A prior heat stress-elevated Hsp25 content to levels similar to those measured following overload alone, but heat stress-induced Hsp72 content was increased significantly greater than was elicited by overload alone. Moreover, overloaded muscles from animals that experienced a prior heat stress showed a lower muscle mass increase at 5 and 7 days; a reduced total muscle protein elevation at 3, 5, and 7 days; reduced protein concentration; and a diminished Type I MHC content accumulation at 3, 5, and 7 days relative to nonheat-stressed animals. These data suggest that a prior heat stress and/or the consequent accumulation of Hsps may inhibit increases in muscle mass, total muscle protein content, and Type I MHC in muscles undergoing hypertrophy.  相似文献   

19.
Dichloroacetate (an activator of pyruvate dehydrogenase) stimulates 14CO2 production from [U-14C]glucose, but not from [U-14C]glutamate, [U-14C]aspartate, [U-14C]- and [1-14C]-valine and [U-14C]- and [1-14C]-leucine. It is concluded (1) that pyruvate dehydrogenase is not rate-limiting in the oxidation to CO2 of amino acids that are metabolized to tricarboxylic acid-cycle intermediates, and (2) that carbohydrate (and not amino acids) is the main carbon precursor in alanine formation in muscle.  相似文献   

20.
We determined changes in rat plantaris, diaphragm, and intercostal muscle metabolites following exercise of various intensities and durations, in normoxia and hypoxia (FIO2 = 0.12). Marked alveolar hyperventilation occurred during all exercise conditions, suggesting that respiratory muscle motor activity was high. [ATP] was maintained at rest levels in all muscles during all normoxic and hypoxic exercise bouts, but at the expense of creatine phosphate (CP) in plantaris muscle and diaphragm muscle following brief exercise at maximum O2 uptake (VO2max) in normoxia. In normoxic exercise plantaris [glycogen] fell as exercise exceeded 60% VO2max, and was reduced to less than 50% control during exhaustive endurance exercise (68% VO2max for 54 min and 84% for 38 min). Respiratory muscle [glycogen] was unchanged at VO2max as well as during either type of endurance exercise. Glucose 6-phosphate (G6P) rose consistently during heavy exercise in diaphragm but not in plantaris. With all types of exercise greater than 84% VO2max, lactate concentration ([LA]) in all three muscles rose to the same extent as arterial [LA], except at VO2max, where respiratory muscle [LA] rose to less than half that in arterial blood or plantaris. Exhaustive exercise in hypoxia caused marked hyperventilation and reduced arterial O2 content; glycogen fell in plantaris (20% of control) and in diaphragm (58%) and intercostals (44%). We conclude that respiratory muscle glycogen stores are spared during exhaustive exercise in the face of substantial glycogen utilization in plantaris, even under conditions of extreme hyperventilation and reduced O2 transport. This sparing effect is due primarily to G6P inhibition of glycogen phosphorylase in diaphragm muscle. The presence of elevated [LA] in the absence of glycogen utilization suggests that increased lactate uptake, rather than lactate production, occurred in the respiratory muscles during exhaustive exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号