首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The physiological effects of the pancreatic peptides somatostatin-14 and somatostatin-25 on lipid metabolism in rainbow trout were evaluated by in vitro culture of liver and adipose tissue. The culture medium was subsequently analyzed for glycerol and fatty acid content and triacylglycerol lipase activity was measured within the tissues. Both somatostatin-14 and somatostatin-25 stimulated hepatic fatty acid and glycerol release within 3 h after treatment. Liver triacylglycerol lipase activity was elevated following treatment with somatostatin-14 (76% above control) or somatostatin-25 (94% above control). Somatostatin-14 and somatostatin-25 also significantly stimulated the release of fatty acid and glycerol from adipose tissue. Triacylglycerol lipase activity in adipose tissue also was enhanced by both somatostatins. These results indicate that somatostatin-14 and somatostatin-25 directly stimulate the mobilization of triacylglycerol from liver and adipose tissue, suggesting that these peptides are important systemic modulators of lipid metabolism in fish.Abbreviations bw body weight - cAMP cyclic adenosine monophosphate - FA ratty acids - fw fresh weight - GLU glucagon - INS insulin - MS-222 tricaine-methane sulphonate - SS-14 somatostatin-14 - SS-25 somatostatin-25 - TG triacylglycerol  相似文献   

2.
1. Plasma levels of insulin, glucagon, and glucagon-like peptide (Glp) were all reduced by starvation of salmon and cod. In the salmon the drop in Glp was larger than in insulin and glucagon. 2. After starvation the activity of hexokinase (EC 2.7.1.1) was increased in salmon liver, but decreased in cod liver. The salmon hepatic hexokinase activity was inversely correlated with the Glp/insulin ratio. 3. Activities of hepatic glycogen phosphorylase (EC 2.4.1.1) and phosphofructokinase (EC 2.7.1.11) were increased in starved as compared to fed salmon. In cod, starvation resulted in decreased or unchanged activity of phosphorylase. This discrepancy may be related to different degrees of environmental and handling stress. 4. Intraperitoneal injection of human insulin in salmon gave increased hepatic phosphorylase and hexokinase activities and reduced plasma levels of glucagon, Glp and endogenous fish insulin at sampling after 30 hr. 5. No differences in hepatic hexokinase activities or plasma hormone levels were observed between cod fed low and high carbohydrate diets. Apparently, regulation of glucose phosphorylation by dietary carbohydrate does not occur.  相似文献   

3.
1. In catfish (Ictalurus melas) after glucagon treatment blood glucose increased until 150 min, then it gradually decreased towards control values at the 5th hr. 2. In glucagon treated fish, liver glycogen levels were significantly lower then in controls 30 min after hormone administration; thereafter, liver glycogen levels returned rapidly to initial values. Glucagon did not induce any significant effect on the glycogen content in white and red muscles. 3. In liver slices, the addition of glucagon to the incubation medium significantly enhanced the glycogen phosphorylase activity and decreased the level of glycogen. Both phosphorylase activity and glycogen content of white and red muscle slices were practically unaffected by glucagon.  相似文献   

4.
We investigated the effects of cysteamine on the pancreatic islet hormones and found that pancreatic somatostatin contents depleted 60 min after the oral administration of cysteamine (300 mg/kg) to rats, yet the insulin and glucagon contents remained unchanged. When pancreatic islets isolated by collagenase digestion were incubated for 60 min in Krebs-Ringer bicarbonate buffer containing 0.1, 1, or 10 mM cysteamine, cysteamine dose-dependently decreased the somatostatin content, however, only a high concentration (10 mM) decreased the insulin level, and cysteamine exerted no effect on the glucagon content. The islet hormones (synthetic somatostatin-14, synthetic somatostatin-28, extracted pork insulin and extracted pork glucagon) were incubated for 60 min with cysteamine (0.1, 1, or 10 mM) and somatostatin-14 was found to be markedly decreased by 1 mM cysteamine. Pork insulin but not pork glucagon was dose-dependently decreased by 0.1-10 mM cysteamine. Cysteamine, 0.1-1 mM, did not interfere with the radio-immunoassay system for somatostatin or insulin, although 10 mM cysteamine did so. This compound exerted no effect on the radioimmunoassay system for glucagon. Our studies support earlier findings that cysteamine administered to experimental animals plays a role of relatively specific depletor of somatostatin. The possibility that the depletion of somatostatin is in part due to the remarkable sensitivity of the intracellular compartments of the D cells to the drug and in part due to the remarkable sensitivity of the molecular structure of somatostatin has to be considered.  相似文献   

5.
Pancreastatin is a novel 49-amino acid peptide with a C-terminal glycine amide. The peptide was isolated from porcine pancreatic extracts and shows a structural similarity to chromogranin A. The effect of synthetic porcine pancreastatin on blood glucose levels and hepatic glycogen content was investigated in ratsin vivo. Pancreastatin (300 pmol/kg) produced a time-dependent decrease in glycogen content of liver and a slight hyperglycemia. Basal plasma insulin and glucagon levels were not modified by pancreastatin. We suggest that pancreastatin could play a biological role in the glucose metabolism through a glycogenolytic effect.  相似文献   

6.
We have compared the effects of equimolar doses of intravenous somatostatin-28 (SS-28) and somatostatin-14 (SS-14) (250 micrograms and 125 micrograms, respectively) on the secretion of pancreatic polypeptide (PP), glucagon and insulin evoked by a protein-rich meal in normal subjects. Both peptides reduced the fasting plasma levels of these hormones and completely abolished their responses to the alimentary stimulus; in addition, they caused an early decrease of plasma glucose followed by a hyperglycemic phase. As compared to SS-14, SS-28 elicited a longer-lasting inhibition of PP and insulin secretion and displayed greater hypo- and hyperglycemic effects. A somatostatin-like component, similar to SS-28, has been identified in pancreatic extracts as well as in peripheral plasma. Thus, it might be hypothesized that this peptide plays a role in the control of pancreatic hormone release.  相似文献   

7.
It has been suggested that the increased activity of the sympathetic nervous system and the resultant increase in the tissue catecholamine levels contribute to the pathogenesis of diabetes. In this study we evaluated the effect of clonidine, a central adrenergic agonist that decreases sympathetic tone, on the serum levels of glucose, insulin, glucagon and norepinephrine and on the hepatic glycogen content in normal and streptozotocin-diabetic rats. The animals were treated with clonidine 25 micrograms/kg/day interperitoneally for 3 weeks to suppress the central adrenergic impulses. Clonidine treatment significantly increased the weight gain, but did not affect plasma glucose, insulin, glucagon and norepinephrine in the diabetic animals. Pancreatic insulin and liver glycogen contents were significantly higher in the clonidine-treated than in the untreated diabetic rats. However, clonidine did not affect pancreatic insulin and liver glycogen content of nondiabetic animals. The intravenous administration of glucagon increased plasma glucose in the clonidine-treated, but not in the saline-treated diabetic rats. Insulin-induced hypoglycemia significantly enhanced glucagon release in clonidine-treated but not in saline-treated diabetic rats. We conclude that the suppression of central adrenergic activity may ameliorate the effects of insulin insufficiency on pancreatic hormone secretion and hepatic glycogen content.  相似文献   

8.
Arginine (Arg), injected intraperitoneally into rainbow trout (Oncorhynchus mykiss), increases plasma concentrations of glucagon, glucagon-like peptide-1 (GLP-1), and insulin by three- to 10-fold. Resulting ratios of glucagon and GLP-1 over insulin are unchanged in 20-d food-deprived fish (saline, 1.28 vs. Arg, 0.93; not significant) while slightly increased in feeding trout (saline, 0.70 vs. Arg, 0.92; P<0.05). In food-deprived juveniles, Arg injection leads to significant decreases in plasma fatty acids (saline, 1.65 mM L(-1) vs. Arg, 1.09 mM L(-1); P<0.05) and increases in glycogen phosphorylase total activity (saline, 3.7 units g(-1) vs. Arg, 4.6 units g(-1); P<0.05) and degree of phosphorylation (saline, 1.7 units g(-1) vs. Arg, 2.33 units g(-1); P<0.05). Plasma and liver glucose and liver enzymes (glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, pyruvate kinase, phosphoenolpyruvate carboxykinase, lactate dehydrogenase, and malic enzyme) are unaffected. Otherwise, fish show the changes in plasma metabolites expected with food deprivation. Arg injection into feeding fish results in decreases in plasma fatty acids, liver glycogen, and glucose, while liver glucose 6-phosphate concentrations increase. Hepatocytes isolated from feeding fish injected with Arg 2 h previously show significantly lower rates of lactate oxidation than controls (85% of control), while rates of gluconeogenesis and hormonal responses to mammalian glucagon and GLP-1 remain unchanged. Rates of lactate oxidation and gluconeogenesis are significantly decreased by 5%-10% on treatment with porcine insulin. Complete immunoneutralization of insulin with rabbit antisalmon insulin serum decreases hepatic glucose 6-phosphate concentrations and abolishes the Arg-dependent effects on glycogen phosphorylase. It appears that short-term increases in pancreatic hormones cause only minor metabolic readjustments in the relatively short time frame covered in these experiments. Surprisingly, complete removal of insulin does not have immediate altering or detrimental effects on key metabolites and metabolic pathways, even if glucagon and GLP-1 concentrations are concurrently several-fold higher than usual. Our data clearly show the dual role of Arg in fish metabolism.  相似文献   

9.
Summary Pancreatic islets of salmon contain at least two peptides of the glucagon family: 29-amino acid glucagon and 31-amino acid glucagon-like peptide (GLP). Both peptides were recently isolated from the pancreatic islets of coho salmon and sequenced (Plisetskaya et al. 1986). Antibodies generated against these two peptides and against human glucagon were used as immunocytochemical probes to investigate whether glucagon and GLP are processed in the same, or in different cell types in the pancreatic islets and the gut of salmon. Two salmonid species, rainbow trout and coho salmon, were studied. All islet A-cells in the two species were immunoreactive toward both anti-salmon (s)-glucagon and anti-s-GLP. Similar colocalization of glucagon and GLP immunoreactivities was found in open-type endocrine cells in mucosae of the small intestine (including the pyloric coecae) and the large intestine close to the vent of rainbow trout. None of the antibodies stained mucosal cells of the body of the stomach. These results suggest that in the pancreas and the gut of salmonid fish the same cells produce both glucagon and GLP. These peptides are most likely the products of a single gene coding for the preproglucagon sequence.  相似文献   

10.
The role of endogenous glucagon and insulin on the hepatic glycogen and triglyceride storage syndrome in propylthiouracil (PTU)-induced hypothyroidism was investigated in the chick. PTU feeding in the diet resulted in a progressive increase in liver glycogen concentration associated with a concomitant decrease in hepatic glucose-6-phosphatase (G-6-Pase) activity. Plasma glucagon level was significantly decreased and insulin significantly increased after two days of PTU administration. These enzyme and hormone changes were associated with a significant increase in hepatic glucose-6-phosphate (G-6-P) and a decrease in cyclic AMP levels. Although our results do not directly prove, the data does suggest that the hepatic glycogen storage syndrome observed in the PTU-induced hypothyroidism in the chick is mediated through changes in pancreatic glucagon and insulin secretion. The extent of glycogen accumulation was inversely related to G-6-Pase which is a rate limiting glycogenolytic enzyme. A significant increase in the plasma insulin/glucagon ratio, along with a significant decrease in the hepatic cyclic AMP concentration, could most likely also account for the excessive hepatic triglyceride accumulation in the PTU-treated chicks.  相似文献   

11.
The direct effects of somatostatin-14 (SRIF; synthetic ovine) and the fish caudal neuropeptide, urotensin II (UII; synthetic Gillichthys), on fatty acid (FA) release and on lipolytic enzyme (triacylglycerol lipase) activity were determined on coho salmon liver slices incubated in vitro. FA release was continuously measured by pH-stat titration. Additionally, gas chromatographic analysis of the incubation medium was performed to determine the type and relative composition of medium fatty acid constituents. SRIF and UII both stimulated FA release in a dose-dependent manner; the two peptides appeared to stimulate FA release in an equimolar manner. Maximal response was obtained at 1 X 10(-5) M; ED50 was approximately 2 X 10(-7) M. SRIF-stimulated FA release did not result in differential secretion of any particular FA type. Tissue triacylglycerol lipase activity was significantly enhanced by addition of UII or SRIF (2 X 10(-6) M). Dibutyryl cAMP and IBMX both stimulated FA release and lipase activity; dbcAMP stimulated FA release in dose-dependent manner. These results indicate that SRIF and UII directly enhance lipid mobilization from salmon liver slices and suggest that SRIF- and UII-stimulated lipid mobilization from salmon liver slices is mediated through cAMP.  相似文献   

12.
The growth arrest after hypophysectomy in rats is mainly due to growth hormone (GH) deficiency because replacement of GH or insulin-like growth factor (IGF) I, the mediator of GH action, leads to resumption of growth despite the lack of other pituitary hormones. Hypophysectomized (hypox) rats have, therefore, often been used to study metabolic consequences of GH deficiency and its effects on tissues concerned with growth. The present study was undertaken to assess the effects of hypophysectomy on the serum and pancreatic levels of the three major islet hormones insulin, glucagon, and somatostatin, as well as on IGF-I. Immunohistochemistry (IHC), in situ hybridization (ISH), radioimmunoassays (RIA), and Northern blot analysis were used to localize and quantify the hormones in the pancreas at the peptide and mRNA levels. IHC showed slightly decreased insulin levels in the cells of hypox compared with normal, age-matched rats whereas glucagon in cells and somatostatin in cells showed increase. IGF-I, which localized to cells, showed decrease. ISH detected a slightly higher expression of insulin mRNA and markedly stronger signals for glucagon and somatostatin mRNA in the islets of hypox rats. Serum glucose concentrations did not differ between the two groups although serum insulin and C-peptide were lower and serum glucagon was higher in the hypox animals. These changes were accompanied by a more than tenfold drop in serum IGF-I. The pancreatic insulin content per gram of tissue was not significantly different in hypox and normal rats. Pancreatic glucagon and somatostatin per gram of tissue were higher in the hypox animals. The pancreatic IGF-I content of hypox rats was significantly reduced. Northern blot analysis gave a 2.6-, 4.5-, and 2.2-fold increase in pancreatic insulin, glucagon, and somatostatin mRNA levels, respectively, in hypox rats, and a 2.3-fold decrease in IGF-I mRNA levels. Our results show that the fall of serum IGF-I after hypophysectomy is accompanied by a decrease in pancreatic IGF-I peptide and mRNA but by partly discordant changes in the serum concentrations of insulin and glucagon and the islet peptide and/or mRNA content of the three major islet hormones. It appears that GH deficiency resulting in a low IGF-I state affects translational efficiency of these hormones as well as their secretory responses. The maintenance of normoglycemia in the presence of reduced insulin and elevated glucagon serum levels, both of which would be expected to raise blood glucose, may result mainly from the enhanced insulin sensitivity, possibly due to GH deficiency and the subsequent decrease in IGF-I production.  相似文献   

13.
When adult male rats were fasted for 24 or 72 h there was no change in the pancreatic content of insulin or glucagon, but the somatostatin content increased at 72 h. This contrasts with earlier reports of reduced pancreatic somatostatin after fasting. After a 48-hour fast there was an increase in the concentration of duodenal somatostatin, and a tendency toward reduced concentrations in stomach, jejunum, and ileum. When duodenal mucosa and muscle extracts were chromatographed the relative amounts of putative somatostatin-28 and somatostatin-14 were unchanged. Insulin secretion from the perfused pancreata of 72-hour-fasted rats was markedly reduced, but glucagon and somatostatin secretion was indistinguishable from that of fed controls. These results indicate that in spite of the marked alterations of nutrient metabolism and insulin secretion which occur during fasting, the pancreatic content of insulin, glucagon and somatostatin and the gut concentration of somatostatin are well maintained.  相似文献   

14.
Summary The coexistence of immunoreactivities to cholecystokinin, glucagon, glucagon-like peptide 1, salmon pancreatic polypeptide, neuropeptide tyrosine, and peptide tyrosine tyrosine was studied immunocytochemicaly, revealing for the first time in fish intestine the existence in the same cell of immunoreactivities to cholecystokinin-glucagon/glucagon-like peptide 1, cholecystokinin-salmon pancreatic polypeptide, glucagon/glucagon-like peptide 1-salmon pancreatic polypeptide, glucagon/glucagon-like peptide 1-neuropeptide tyrosine, salmon pancreatic polypeptide tyrosine tyrosine, and glucagon/glucagon-like peptide 1-peptide tyrosine tyrosine. Colocalization of cholecystokinin-salmon pancreatic polypeptide was observed only in the pyloric caeca of the rainbow trout Oncorhynchus mykiss, while the other colocalizations also occurred in proximal and middle intestinal segments. In all cases, endocrine cells immunoreactive to only one of the paired antisera were detected except for anti-glucagon and anti-glucagon-like peptide 1, which always immunostained the same cells.  相似文献   

15.
This study compares the potencies of the porcine gastrin-releasing peptide (pGRP) and bombesin, in causing elevations of canine plasma gastroenteropancreatic (GEP) levels. In the dose range 0-600 pmol . kg-1 . h-1, infusion of both peptides resulted in obvious dose-related elevations of plasma levels of gastrin, pancreatic polypeptide, enteroglucagon, immunoreactive pancreatic glucagon, and insulin. In this dose range, no significant difference in potency between the two peptides in elevating plasma levels of the above hormones was observed. The results of this study, demonstrating equimolar potency of pGRP and bombesin, are in contrast to previous studies reporting that pGRP was less potent than bombesin in causing certain bioactivities in the rat following intracranial administration of the two peptides.  相似文献   

16.
The effect of physiological concentrations of glucagon and insulin on glycogenolysis was studied in the presence and absence of substrates in isolated hepatocytes containing high glycogen. In the absence of substrates glucagon stimulated glycogenolysis at 10?14M concentration, and addition of 100 μunits of insulin partially inhibited glucagon stimulated glycogenolysis (10?14M to 10?11M). However, in the presence of substrates, insulin completely inhibited glucagon stimulated glycogenolysis (10?14M to 10?11M), indicating that molar glucagon and insulin ratios control carbohydrate metabolism in liver. Additional studies showed incorporation of amino acid into protein was linear for only 3 to 4 hr in cells containing low glycogen, whereas in cells containing high glycogen, incorporation was linear for 8 to 10 hr.  相似文献   

17.
Summary Carp, Cyprinus carpio, were subjected to a short term of fasting (2 months) and 12 days of refeeding. The early changes produced in plasma metabolites and hormones (insulin and glucagon) and their respective energy contribution in liver and muscle during fasting and refeeding was studied. Two phases of fasting were differentiated. The first phase (until day 8 of fasting) was characterized by a reduction in the hepatosomatic index mainly due to glycogen mobilization. A transitory increase in plasma glucose and lactate suggested an initial increase in energy demand. No changes were produced in the percentage of glycogen and protein in muscle, but musculosomatic index and the total body muscle protein decreased. Although the most depleted tissue in this phase was the liver, the loss of energy content of total muscle was higher. Stabilization of liver glycogen content, plasma glucose and lactate levels, decreased muscle protein levels and a reduction in the rate of body weight loss characterized the second phase (from day 8 of fasting). Protein content in whole muscle decreased by 22%, similar to the first phase. The energy expenditure of both liver and muscle was lower in this phase. Plasma insulin levels decreased two-fold and plasma glucagon three-fold in the first phase and remained low in the second phase of fasting. Twelve days of refeeding produced a greater increase in daily growth rate than in the control group and a recovery of plasma insulin, glucagon and glucose levels. Liver completely recovered. In contrast, musculosomatic index, protein and lipid content indicated that muscle did not completely recover from the 2 months of fasting, although and overshoot of muscle glycogen was observed.Abbreviations ANOVA analysis of variance - bw body weight - D1, D2, D5, D8, D19, D50 1, 2, 5, 8, 19 and 50 days of fasting, respectively - GSI gonadosomatic index - HSI hepatosomatic index - MSI musculosomatic index - P-DNA deoxyribonucleic acid phosphorus  相似文献   

18.
Metabolic changes during the transition from post-feeding to fasting were studied in Brycon cephalus, an omnivorous teleost from the Amazon Basin in Brazil. Body weight and somatic indices (liver and digestive tract), glycogen and glucose content in liver and muscle, as well as plasma glucose, free fatty acids (FFA), insulin and glucagon levels of B. cephalus, were measured at 0, 12, 24, 48, 72, 120, 168 and 336 h after the last feeding. At time 0 h (the moment of food administration, 09.00 h) plasma levels of insulin and glucagon were already high, and relatively high values were maintained until 24 h post-feeding. Glycemia was 6.42+/-0.82 mM immediately after food ingestion and 7.53+/-1.12 mM at 12 h. Simultaneously, a postprandial replenishment of liver and muscle glycogen reserves was observed. Subsequently, a sharp decrease of plasma insulin occurred, from 7.19+/-0.83 ng/ml at 24 h of fasting to 5.27+/-0.58 ng/ml at 48 h. This decrease coincided with the drop in liver glucose and liver glycogen, which reached the lowest value at 72 h of fasting (328.56+/-192.13 and 70.33+/-14.13 micromol/g, respectively). Liver glucose increased after 120 h and reached a peak 168 h post-feeding, which suggests that hepatic gluconeogenesis is occurring. Plasma FFA levels were low after 120 and 168 h and increased again at 336 h of fasting. During the transition from post-feeding to fast condition in B. cephalus, the balance between circulating insulin and glucagon quickly adjust its metabolism to the ingestion or deprivation of food.  相似文献   

19.
1. The effects of subcutaneous injection of cysteamine (2-mercaptoethylamine, 300 mg/kg) were investigated in 5-6 week-old chickens. 2. In the short term (1 hr), cysteamine increased plasma levels of glucose, free fatty acids and insulin, and decreased that of alpha-amino non protein nitrogen. 3. In a longer term (17-24 hr), cysteamine increased the plasma level of glucose, did not modify those of alpha-amino non protein nitrogen, insulin and glucagon and decreased that of free fatty acids. 4. The disposal of an oral glucose load was impaired and the glucose-induced inhibition of pancreatic glucagon and stimulation of insulin release were blunted 17 hr after cysteamine administration. 5. Therefore, cysteamine exerts multiple effects on chicken pancreatic islet cells.  相似文献   

20.
Summary Pancreastatin is a 49 amino acid comprising peptide isolated from porcine pancreas that is derived by proteolytic processing from chromogranin A. Using an antibody against the synthetic C-terminal fragment pancreastatin (33–49), we examined the light and electron microscopical immunocytochemical localization of this peptide in porcine tissues. Pancreastatin-like immunoreactivity (PLI) was found in pancreatic somatostatin-, insulin- and glucagon cells in varying intensities; pancreatic polypeptide cells were always negative. At the electron microscopical (EM) level the immunoreactivity was confined to the electron dense core of the secretory granules in the case of somatostatin and insulin cells or to the less electron dense halo of the glucagon granules. In the antrum PLI positive cells represented gastrin (G), somatostatin (D) and enterochromaffin (EC) cells, in the duodenum in addition to EC- and G-cells a small number of PLI positive cells showed a positive immunoreaction for glucagon-like peptide (GLP) I and secretin in serial sections. Both norepinephrine and epinephrine containing cells of the adrenal medulla exhibited a strong reaction for PLI. In the pituitary several cell populations stained with varying intensities, including gonadotrophs and thyrotrophs. PLI is present in a distinct and characteristic subpopulation of neuroendocrine cells in various organs. The subcellular localization may indicate a function in the granular concentration, packaging and storage of peptides and amines in the brain-gut endocrine system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号