首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We investigated the consequences of augmented c-myc gene expression in the mammary gland of transgenic mice. For this purpose we directed the expression of a mouse c-myc transgene to the differentiating mammary epithelial cells by subjecting the protein coding region to the 5' regulatory sequences of the murine whey acidic protein gene (Wap). Analogous to the expression pattern of the endogenous Wap gene, the Wap-myc transgene is abundantly expressed in the mammary gland during lactation. The tissue-specific and hormone-dependent expression of the Wap-myc transgene results in an 80% incidence of mammary adenocarcinomas. As early as two months after the onset of Wap-myc expression, tumours occur in the mammary glands of the transgenic animals. The tumours express not only the Wap-myc transgene, but also the endogenous Wap and beta casein genes. The expression of the milk protein genes becomes independent of the lactogenic hormonal stimuli and persists even in transplanted nude mouse tumours.  相似文献   

4.
Human pro-urokinase expressed in the mammary glands of transgenic animals is quickly activated and converted to urokinase by proteases that are present in the milk. Thus, it is nearly impossible to isolate full-sized pro-urokinase from the milk of transgenic animals. To solve this problem, we constructed transgenic mice that express human pro-urokinase and modified ecotin, which is a potent serine protease inhibitor from E. coli, in their mammary glands. The gene encoding ecotin was modified so as to enhance its specificity for the human urokinase-type plasminogen activator. Co-expression of modified ecotin and human pro-urokinase in the mammary glands allows for purification of full-length human pro-urokinase from these transgenic mice. The results described here suggest a general way of preventing the activation of zymogens that are expressed in the mammary glands of transgenic animals by co-expression of a zymogen along with a protease inhibitor.  相似文献   

5.
Due to drawbacks of live attenuated vaccines, much attention has been focused on screening Brucella-protective antigens as subunit vaccine candidates. Here, an immunoproteomic assay was used to identify the immunogenic soluble proteins of Brucella melitensis 16M. In the present study, 27 unique immunogenic proteins were identified from the two-dimensional electrophoresis immunoblot profiles by liquid chromatography tandem MS (LC-MS/MS). From this set, the gene encoding one immunodominant protein of interest, S-adenosyl-l-homocysteine hydrolase (AdoHcyase), was expressed in Escherichia coli. The recombinant AdoHcyase induced a strong antibody response in BALB/c mice, and the polyclonal antibody could recognize a band of approximately 52 kDa in the immunoblots of soluble protein extracts from five Brucella strains. rAdoHcyase significantly stimulated the production of interferon-γ and interleukin-2, and induced a high level of protection against B. melitensis 16M challenge at 4 weeks postchallenge. Our results indicated that rAdoHcyase could be a useful candidate for the development of subunit vaccines against B. melitensis.  相似文献   

6.
The murine cytomegalovirus (MCMV) immediate-early gene 1 (IE1) encodes an 89-kDa phosphoprotein (pp89) which plays a key role in protecting BALB/c mice against the lethal effects of the MCMV infection. In this report, we have addressed the question of whether "naked DNA" vaccination with a eukaryotic expression vector (pcDNA-89) that contains the MCMV IE1 gene driven by a strong enhancer/promoter can confer protection. BALB/c mice were immunized intradermally with pcDNA-89 or with the plasmid backbone pcDNAI/Amp (pcDNA) and then challenged 2 weeks later with either a lethal or a sublethal intraperitoneal dose of the K181 strain of MCMV. Variable results were obtained for the individual experiments in which mice received a lethal challenge. In four separate trials, an average of 63% of the mice immunized with pcDNA-89 survived, compared with 18% of the mice immunized with pcDNA. However, in two other trials there was no specific protection. The results of experiments in which mice were injected with a sublethal dose of MCMV were more consistent, and significant decreases in viral titer in the spleen and salivary glands of pcDNA-89-immunized mice were observed, relative to controls. At the time of peak viral replication, titers in the spleens of immunized mice were reduced 18- to >63-fold, while those in the salivary gland were reduced approximately 24- to 48-fold. Although DNA immunization elicited only a low level of seroconversion in these mice, by 7 weeks postimmunization the mice had generated a cytotoxic T-lymphocyte response against pp89. These results suggest that DNA vaccination with selected CMV genes may provide a safe and efficient means of immunizing against CMV disease.  相似文献   

7.
Fu S  Xu J  Li X  Xie Y  Qiu Y  Du X  Yu S  Bai Y  Chen Y  Wang T  Wang Z  Yu Y  Peng G  Huang K  Huang L  Wang Y  Chen Z 《PloS one》2012,7(2):e29552
Due to drawbacks of live attenuated vaccines, much more attention has been focused on screening of Brucella protective antigens as subunit vaccine candidates. Brucella is a facultative intracellular bacterium and cell mediated immunity plays essential roles for protection against Brucella infection. Identification of Brucella antigens that present T-cell epitopes to the host could enable development of such vaccines. In this study, 45 proven or putative pathogenesis-associated factors of Brucella were selected according to currently available data. After expressed and purified, 35 proteins were qualified for analysis of their abilities to stimulate T-cell responses in vitro. Then, an in vitro gamma interferon (IFN-γ) assay was used to identify potential T-cell antigens from B. abortus. In total, 7 individual proteins that stimulated strong IFN-γ responses in splenocytes from mice immunized with B. abortus live vaccine S19 were identified. The protective efficiencies of these 7 recombinant proteins were further evaluated. Mice given BAB1_1316 (CobB) or BAB1_1688 (AsnC) plus adjuvant could provide protection against virulent B. abortus infection, similarly with the known protective antigen Cu-Zn SOD and the license vaccine S19. In addition, CobB and AsnC could induce strong antibodies responses in BALB/c mice. Altogether, the present study showed that CobB or AsnC protein could be useful antigen candidates for the development of subunit vaccines against brucellosis with adequate immunogenicity and protection efficacy.  相似文献   

8.
Using a DNA construct, named Lama, derived from the murine parotid secretory protein (PSP) gene, we have obtained salivary gland specific gene expression in transgenic mice. Lama is a PSP minigene and allows analysis of the PSP gene 5' regulatory region by transgenesis. We show here that the regulatory region included in Lama with 4.6 kb of 5' flanking sequence is sufficient to direct expression specifically to the salivary glands. The expression level in the parotid gland is only about one percent of the PSP mRNA level, while that of the sublingual gland is near the PSP mRNA level. This suggests significant differences in the PSP gene regulation in the two glands. In addition, Lama is a secretory expression vector in which cDNAs or genomic fragments can be inserted. We demonstrate that the Lama construct can direct the expression of a heterologous cDNA encoding the C-terminal peptide of human factor VIII to salivary glands and that the corresponding peptide is secreted into saliva.  相似文献   

9.
Mycobacterium consists up to 7% of mycobacterial DNA-binding protein 1 (MDP1) in total cellular proteins. Host immune responses to MDP1 were studied in mice to explore the antigenic properties of this protein. Anti-MDP1 IgG was produced after infection with either bacillus Calmette-Guérin or Mycobacterium tuberculosis in C3H/HeJ mice. However, the level of Ab was remarkably low when purified MDP1 was injected. MDP1 is considered to be associated with DNA in nucleoid, which contains immunostimulatory CpG motif. Therefore, we examined coadministration of MDP1 and DNA derived from M. tuberculosis. Consequently, this procedure significantly enhanced the production of MDP1-specific IgG. Five nanograms of DNA was enough to enhance MDP1-specific IgG production in the administration of 5 microg of MDP1 into mice. Strong immune stimulation by such a small amount of DNA is noteworthy, because >1,000- to 100,000-fold doses of CpG DNAs are used for immune activation. A synthetic peptide-based study showed that B cell epitopes were different between mice administered MDP1 alone and those given a mixture of MDP1 and DNA, suggesting that DNA alters the three-dimensional structure of MDP1. Coadministration of DNA also enhanced MDP1-specific IFN-gamma production and reduced the bacterial burden of a following challenge of M. tuberculosis, showing that MDP1 is a novel vaccine target. Finally, we found that MDP1 remarkably enhanced TLR9-dependent immune stimulation by unmethylated CpG oligo DNA in vitro. To our knowledge, MDP1 is the first protein discovered that remarkably augments the CpG-mediated immune response and is a potential adjuvant for CpG DNA-based immune therapies.  相似文献   

10.
This study was aimed at establishing a new platform for real-time monitoring of milk-protein gene expression in the mammary glands. A transgenic reporter composed of the beta-lactoglobulin (BLG)/luciferase hybrid gene was targeted to the mammary glands of pregnant and lactating mice and luciferase activity was imaged in vivo with a low-light imaging system. The mammary glands of a 17-day pregnant mouse occupied an area comparable to that of a 6-day lactating mouse. Nevertheless, the intensity of the luciferase signal was much weaker and confined to regions in the inguinal and thoracic glands. A few small and defined locations of higher expression were also detected, indicating diversity in the initiation of this transgenic milk protein expression. In the lactating mice, high inter- and intra-heterogeneity among regions in a particular gland and among glands was demonstrated, and confirmed by ex vivo analysis of luciferase activity in mammary biopsies. The lack of correlation between luciferase activities and levels of beta-casein accumulation in these biopsies resulted, most probably, from the longer half-life of the native milk protein, compared to the activity of the transgenic marker in the tissue. Unilateral sealing of mammary glands for 4 hr resulted in complete abrogation of luciferase activity, establishing the BLG/luciferase transgene as a reliable tool to follow short-term stimuli. Dispersed mammary epithelial cells preserved luciferase activity in culture, and thus could be used for following mammary gland development after re-implantation. The bioluminescence-based methodology presented here eliminates averaging of heterogeneity in gene expression among glands, and misinterpretations resulting from sampling biopsies taken from inactive regions. Imaging luciferase expression in the mammary glands may enable an accurate monitoring of milk-protein gene expression during cyclic periods of development and apoptosis in a limited number of animals, and could be applied for reporting the consequences of selected drugs on milk-protein gene expression.  相似文献   

11.
DNA vaccination has been evaluated with the lymphocytic choriomeningitis virus (LCMV) model system. Plasmid DNA encoding the LCMV nucleoprotein, when injected intramuscularly, induces both antiviral antibodies and cytotoxic T lymphocytes. Injection of DNA encoding the nucleoprotein or the viral glycoprotein confers protection against normally lethal LCMV challenge in a major histocompatibility complex-dependent manner. The protection conferred is incomplete, but it is most probably mediated by the induced cytotoxic T lymphocytes.  相似文献   

12.
The ability to regulate temporal- and spatial-specific expression of target genes in transgenic mice will facilitate analysis of gene function and enable the generation of murine models of human diseases. The genetic analysis of mammary gland tumorigenesis requires the development of mammary gland-specific transgenics, which are tightly regulated throughout the adult mammary epithelium. Analysis of genes implicated in mammary gland tumorigenesis has been hampered by mosaic transgene expression and the findings that homozygous deletion of several candidate genes (cyclin D1, Stat5A, prolactin receptor) abrogates normal mammary gland development. We describe the development of transgenic mouse lines in which sustained transgene expression was inducibly regulated, both specifically and homogeneously, in the adult mammary gland epithelium. Transgenes encoding RXRalpha and a chimeric ecdysone receptor under control of a modified MMTV-LTR, which targets mammary gland expression, were used. These transgenic 'receptor' lines were crossed with transgenic 'enhancer' lines in which the ecdysone/RXR binding site induced ligand-dependent expression of transgenic beta-galactosidase. Pharmacokinetic analysis of a highly bioactive ligand (ponasterone A), identified through screening ecdysteroids from local plants, demonstrated sustained release and transgene expression in vivo. This transgenic model with both tightly regulated and homogeneous transgene expression, which was sustained in vivo using ligands readily extracted from local flora, has broad practical applicability for genetic analysis of mammary gland disease.  相似文献   

13.
In the present work, we evaluated if oral immunization with the pneumococcal protective protein A (PppA), expressed in the cell wall of Lactococcus lactis (L. lactis PppA+), was able to confer protective immunity against Streptococcus pneumoniae. Mice were immunized orally with L. lactis PppA+ for 5 consecutive days. Vaccination was performed one (nonboosted group) or 2 times with a 2 week interval between each immunization (boosted group). Oral priming with L. lactis PppA+ induced the production of anti-PppA IgM, IgG, and IgA antibodies in serum and in bronchoalveolar (BAL) and intestinal (IF) lavage fluids. Boosting with L. lactis PppA+ increased the levels of mucosal and systemic immunoglobulins. Moreover, the avidity and the opsonophagocytic activity of anti-PppA antibodies were significantly improved in the boosted group. The presence of both IgG1 and IgG2a anti-PppA antibodies in serum and BAL and the production of both interferon gamma and interleukin-4 by spleen cells from immunized mice indicated that L. lactis PppA+ stimulated a mixture of Th1 and Th2 responses. The ability of L. lactis PppA+ to confer cross-protective immunity was evaluated using challenge assays with serotypes 3, 6B, 14, and 23F. Lung bacterial cell counts and hemocultures showed that immunization with L. lactis PppA+ improved resistance against all the serotypes assessed, including serotype 3, which was highly virulent in our experimental animal model. To our knowledge, this is the first demonstration of protection against respiratory pneumococcal infection induced by oral administration of a recombinant lactococcal vaccine.  相似文献   

14.

Key message

The study of insect-resistant transgenic tobacco provides a good foundation for the further application of the cry1Ah gene in other important crops.

Abstract

To improve transgene expression levels and insect resistance, the coding sequence of the novel Bacillus thuringiensis insecticidal gene cry1Ah (truncated cry1Ah) was modified according to the codon bias of the plant by increasing its GC content from the original 37 % to 48, 55, and 63 % (designated m1-cry1Ah, m2-cry1Ah, and m3-cry1Ah, respectively). In addition, the m3-cry1Ah gene was linked with a transit peptide sequence for chloroplast-targeted expression (designated ctp-m3-cry1Ah). Four plant expression vectors were constructed harboring m1-cry1Ah, m2-cry1Ah, m3-cry1Ah, or ctp-m3-cry1Ah. A total of 23 transgenic tobacco lines were produced with the four constructs by Agrobacterium tumefaciens-mediated transformation. PCR, Southern hybridization, quantitative RT-PCR and ELISA indicated that the cry1Ah gene was not only integrated into the tobacco genome, but was also successfully expressed at the mRNA and protein levels. The Cry1Ah protein level in ctp-m3-cry1Ah plants reached 4.42 μg/g fresh weight, which was a 2- to 10-fold increase over the levels observed in m1-cry1Ah, m2-cry1Ah, and m3-cry1Ah plants and resulted in the highest resistance to Helicoverpa armigera based on bioassays. Our results demonstrated that combining the codon optimization of cry1Ah gene with the targeting of Cry1Ah protein to the chloroplasts conferred a high level of protection against insects. The results of our experiments in tobacco, an important model system, provide a good foundation for enhancing the insecticidal efficacy of staple crops.  相似文献   

15.
《Cell reports》2023,42(6):112658
  1. Download : Download high-res image (154KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
18.
Pang CH  Li K  Wang B 《Physiologia plantarum》2011,143(4):355-366
To evaluate the physiological importance of chloroplastic ascorbate peroxidase (CHLAPX) in the reactive oxygen species (ROS)‐scavenging system of a euhalophyte, we cloned the CHLAPX of Suaeda salsa (SsCHLAPX) encoding stromal APX (sAPX) and thylakoid‐bound APX. The stromal APX of S. salsa (Ss.sAPX) cDNA consists of 1726 nucleotides including an 1137‐bp open reading frame (ORF) and encodes 378 amino acids. The thylakoid‐bound APX of S. salsa (Ss.tAPX) cDNA consists of 1561 nucleotides, including a 1284‐bp ORF, and encodes 427 amino acids. The N‐terminal 378 amino acids of Ss.sAPX are identical with those of Ss.tAPX, whereas the C‐terminal 49 amino acids differ. Arabidopsis thaliana lines overexpressing Ss.sAPX and Ss.tAPX were constructed using Agrobacterium tumefaciens transformation methods. Under high light (1000 µmol m?2 s?1), malondialdehyde (MDA) content was lower in transgenic plants than in the wild type. Under high light, Fv/Fm and chlorophyll contents of both overexpressing lines and the wild type declined but were significantly higher in the overexpressing lines than in the wild type. The activities of APX (EC 1.11.1.11), catalase (CAT 1.11.1.6) and superoxide dismutase (SOD EC 1.15.1.1) were higher in the overexpressing lines than in the wild type. The transgenic plants showed increased tolerance to oxidative stress caused by high light. These results suggest that SsCHLAPX plays an important role in scavenging ROS in chloroplasts under stress conditions such as high light.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号