首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superfetation is the ability of females to simultaneously carry multiple broods of embryos at different developmental stages. This is an uncommon reproductive strategy that has evolved independently several times in viviparous fishes. The ecological conditions that favor higher degrees of superfetation (the presence of more simultaneous broods) still remain unclear. In this study we tested hypotheses about the potential effects of three particular ecological factors (water flow velocity, population density, and adult mortality) on superfetation. We used data on six populations of one fish species from the family Poeciliidae (Poeciliopsis baenschi) and a multimodel inference framework to test these hypotheses. We found no clear associations between the degree of superfetation and these ecological factors. Instead, we found a positive relationship between the total number of embryos carried by females and superfetation. Females increased their total fecundity as they overlapped more broods and this pattern was independent of the particular ecological conditions. Thus, in P. baenschi superfetation may facilitate a greater reproductive output. In addition, this positive relationship between total number of embryos and superfetation was stronger in small- and medium-sized females, whereas large females produced few or no simultaneous broods regardless of their total fecundity. The observed lack of association between superfetation and ecological variables is noteworthy because previous studies on other congeneric species have found that superfetation may vary as a function of water flow velocity or food availability. Our results indicate that the effect of particular selective factors on the degree of superfetation may differ among closely related species.  相似文献   

2.
Asymmetric sibling competition arises when siblings with different competitive abilities share a limited resource. Such competition occurs in species with postnatal parental care and may also occur when mothers provision embryos between fertilization and birth (matrotrophy). We hypothesized that the combination of matrotrophy and the simultaneous provisioning of embryos in different stages of development (superfetation) leads to asymmetric competition between sibling embryos. Moreover, we expect the intensity of this competition to increase with the level of superfetation as high levels of superfetation result in greater temporal overlap between broods. This hypothesis predicts that offspring from early broods, which predominantly compete with less‐developed siblings, will be larger at birth than offspring from later broods, which experience competition from more and less‐developed siblings. Data on offspring size at birth from two populations of the highly matrotrophic fish, Heterandria formosa, and similar studies of poeciliid fish spanning a range of life histories are consistent with our hypothesis. Together these results suggest that sibling competition is a direct consequence of the evolution of matrotrophy and superfetation in poeciliid fish.  相似文献   

3.
Superfetation is the ability of females to simultaneously carry multiple broods of embryos, with each brood at a different developmental stage. Matrotrophy is the post‐fertilization maternal provisioning of nutrients to developing embryos throughout gestation. Several studies have demonstrated that, in viviparous fishes, superfetation and matrotrophy have evolved in a correlated way, such that species capable of bearing several simultaneous broods also exhibit advanced degrees of post‐fertilization provisioning. The adaptive value of the concurrent presence of both reproductive modes may be associated with the production of larger newborns, which in turn may result in enhanced offspring fitness. In this study, we tested two hypotheses: (1) species with superfetation and moderate or extensive matrotrophy give birth to larger offspring compared with species without superfetation or matrotrophy; (2) species with higher degrees of superfetation and matrotrophy (i.e. more simultaneous broods and increased amounts of post‐fertilization provisioning) give birth to larger offspring compared with species with relatively low degrees of superfetation and matrotrophy (i.e. fewer simultaneous broods and lesser amounts of post‐fertilization provisioning). Using different phylogenetic comparative methods and data on 44 species of viviparous fishes of the family Poeciliidae, we found a lack of association between offspring size and the combination of superfetation and matrotrophy. Therefore, the concurrent presence of superfetation and moderate or extensive matrotrophy has not facilitated the evolution of larger offspring. In fact, these traits have evolved differently. Superfetation and matrotrophy have accumulated gradual changes that largely can be explained by Brownian motion, whereas offspring size has evolved fluidly, experiencing changes that probably resulted from selective responses to the local conditions.  相似文献   

4.
Predation can drive morphological divergence in prey populations, although examples of divergent selection are typically limited to nonreproductive individuals. In livebearing females, shape often changes drastically during pregnancy, reducing speed and mobility and enhancing susceptibility to predation. In the present study, we document morphological divergence among populations of nonreproductive female livebearing fish (Brachyrhaphis rhabdophora) in predator and nonpredator environments. We then test the hypothesis that shape differences among nonreproductive females are maintained among reproductive females between predator and nonpredator environments. Nonreproductive females in predator environments had larger caudal regions and more fusiform bodies than females in nonpredator environments; traits that are associated with burst speed in fish. Shape differences were maintained in reproductive females, although the magnitude of this difference declined relative to nonreproductive females, suggesting morphological convergence during pregnancy. Phenotypic change vector analysis revealed that females in predator environments became more similar to females in nonpredator environments in the transition from nonreproductive to reproductive. Furthermore, the level of reproductive allocation affected shape similarly between predator environments. These results suggest a life‐history constraint on morphology, in which predator‐driven morphological divergence among nonreproductive B. rhabdophora is not maintained at the same level during pregnancy. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 386–392.  相似文献   

5.
《Journal of morphology》2017,278(7):907-918
Sperm storage within the female reproductive tract has been reported as a reproductive strategy in several species of vertebrates and invertebrates. However, the morphological structures that allow for sperm to be stored and kept viable for long periods are relatively unknown in osteichthyes. We use histological and stereological tools to identify and quantify sperm storage structures (spermathecae) in 12 species of viviparous Poeciliidae. We found spermathecae in nine species, six of which exhibit superfetation (the ability of females to simultaneously carry within the ovary two or more broods of embryos at different stages of development). These spermathecae are folds of ovarian tissue that close around spermatozoa. We compared the number and size (volume) of spermathecae between species with and without superfetation. Species that exhibit superfetation had a significantly higher number of spermathecae than species that do not exhibit this reproductive strategy. In addition, we found that the mean volume of spermathecae and total volume of spermathecae present in the ovary are marginally higher in species with superfetation. Our results contribute to the understanding of the morphological structures that allow for sperm storage in viviparous osteichthyes and suggest a positive relationship between superfetation and the capacity of females to store sperm.  相似文献   

6.
Maternal provisioning of animal embryos may be entirely through yolk deposited in the unfertilized egg (lecithotrophy) or may include post-fertilization nutrient transfer (matrotrophy) in varying degrees. Current theory suggests that the extent of post-fertilization provisioning is resource-dependent, with higher levels of matrotrophy being advantageous in more productive environments. In this study, we investigated post-fertilization embryo provisioning in a livebearing fish, Poecilia mexicana, from two different habitats (a toxic cave and a non-toxic surface habitat) that impose different energetic demands and therefore differ in resources available for reproduction. We predicted that fish in the benign habitat would be more matrotrophic than those from the toxic cave. We used two different techniques for this assay: (1) the matrotrophy-index analysis (MI) for field-collected fish and (2) both MI and radio-tracer assay for laboratory-reared females. According to the interpretation of the matrotrophy index, both populations are purely lecithotrophic, while the radio-tracer assay found females from both populations to actively transfer nutrients to developing embryos at approximately the same rate. Our results suggest that P. mexicana, which was traditionally classified as lecithotrophic, is capable of incipient matrotrophy, and that matrotrophy can contribute to embryo provisioning even in populations from resource-limited environments. Furthermore, the analysis of laboratory-reared animals provides evidence for a genetic component to the large offspring size in cave mollies, which had so far only been described from the field. Specifically, our results suggest matrotrophy occurs in species interpreted as lecithotrophic using the MI approach. Hence, to avoid misclassification, both techniques should ideally be employed in concert, rather than individually. Finally, our results provide further insights into the possible evolutionary pathway from lecithotrophic oviparity to matrotrophic viviparity.  相似文献   

7.
Superfetation is understood as another conception during an already ongoing pregnancy. This implies the existence of young of different developmental stages within the female reproductive tract during certain periods of pregnancy. Nevertheless, a clear definition of the term as well as distinct criteria to identify the occurrence of superfetation in a species is missing. The variable anatomy of mammalian reproductive tracts seems to make the occurrence of superfetation more or less likely but impedes the simple evaluation of whether it is present or not. Additionally, adequate determination methods are missing or are difficult to apply at the right time. Superfetation or rather superfetation‐like pregnancies are reported for numerous species including humans, livestock and rodents. The usual criteria to assume a case of superfetation include the finding of discordantly developed young within the uterus during post mortem or parturition of young after a birth interval shorter than the assumed pregnancy length. Often the occurrence of superfetation is concluded because other explanations of reproductive artifacts are missing. Even severe reproductive pathologies are often confused with superfetation. True superfetation or superfetation as a reproductive strategy may exist in some mammals. In the American mink (Neovison (Mustela) vison) and the European badger (Meles meles) superfetation occurs in combination with embryonic diapause. In the European brown hare (Lepus europaeus), superfetation has long been assumed to exist but evidence is still controversial. Superfetation definitely occurs in certain species of poeciliid and zenarchopterid fish, some of which also exhibit viviparity and maternal care. In mammals, the evolution of such a reproductive mechanism poses many interesting evolutionary, endocrine, microbial and immunological questions that require further investigation. Here we review the scant and at times ancient literature on this poorly understood topic. The different manifestations of superfetation are defined and reliable criteria to detect superfetation are outlined. Also, the differentiation of superfetation into a reproductive strategy or as a disrupted, abnormal reproductive function is discussed. Due to the different discussed functional aspects of superfetation, it is appropriate to establish a more detailed scheme to classify the true natural superfetation cases into superfertilization, superconception and superfetation proper. To date, there is no mammal species known for which superfetation proper in terms of finding discordantly developed fetuses has been conclusively demonstrated to be not only a rare occurence but an evolved reproductive strategy.  相似文献   

8.
Organisms often respond to environmental change via phenotypic plasticity, in which an individual modulates its phenotype according to the environment. Highly variable or changing environments can exceed physiological limits and generate maladapted plastic phenotypes, which is termed nonadaptive plasticity. In some cases, selection may reduce the negative or disruptive impacts of environmental stress and produce locally adapted populations. Salt is an increasingly prevalent contaminant of freshwater systems and can induce nonadaptive plastic phenotypes for freshwater organisms like amphibians. Hyla cinerea is a frog species with populations inhabiting brackish, coastal habitats, so we use this species to test whether coastal populations are locally adapted to tolerate saltwater by determining how salt exposure during the embryonic and larval stages alters mortality and plastic developmental and metamorphic phenotypes of coastal and inland populations. Coastal frogs have higher survival, faster growth rates, and metamorphose sooner than inland frogs across salinities. Coastal frogs also metamorphose smaller (likely a consequence of earlier metamorphosis) yet maintain constant size, while higher salinities reduce metamorphic size for inland frogs. Coastal frogs evolved to minimize nonadaptive and disruptive impacts of saltwater during larval development and accelerate the larval period to reduce time spent in a stressful environment.  相似文献   

9.
ABSTRACT The American alligator (Alligator mississippiensis) has made a remarkable recovery throughout its range during the last half-century. In Texas, USA, current inland alligator population and harvest management strategies rely on generalized and often site-specific habitat and population data generated from coastal populations, because it is assumed that habitat and demographic similarities exist between inland and coastal populations. These assumptions have not been verified, however, and no studies have specifically examined inland alligator habitat use in Texas. We quantified alligator habitat use in East Texas during 2003–2004 to address this information gap and to facilitate development of regionally specific management strategies. Although habitat was variable among study areas, alligators used habitats with >50% open water, substantial floating vegetation, and emergent vegetation close (<12 m) to dry ground and cover. Adults used habitats further from dry ground and cover, in open water (75–85%), with less floating vegetation (6–22%) than did subadults, which used habitats that were closer to dry ground and cover, with less open water (52–68%), and more floating vegetation (8–40%). Although habitat use mirrored coastal patterns, we estimated alligator densities to be 3–5 times lower than reported in coastal Texas, likely a result of inland habitat deviations from optimal coastal alligator habitat, particularly in the preponderance of open water and floating vegetation. Our findings that 1) inland habitats varied among sites and did not exactly match assumed optimal coastal habitats, 2) alligators used these inland habitats slightly differently than coastal areas, and 3) inland alligator densities were lower than coastal populations, all highlight the need for regionally specific management approaches. Because alligator populations are influenced by habitat quality and availability, any deviations from assumed optimal habitat may magnify harvest impacts upon inland populations.  相似文献   

10.
Spatially variable selection has the potential to result in local adaptation unless counteracted by gene flow. Therefore, barriers to gene flow will help facilitate divergence between populations that differ in local selection pressures. We performed spatially and temporally replicated reciprocal field transplant experiments between inland and coastal habitats using males of the common blue damselfly (Enallagma cyathigerum) as our study organism. Males from coastal populations had lower local survival rates than resident males at inland sites, whereas we detected no differences between immigrant and resident males at coastal sites, suggesting asymmetric local adaptation in a source–sink system. There were no intrinsic differences in longevity between males from the different environments suggesting that the observed differences in male survival are environment-dependent and probably caused by local adaptation. Furthermore, the coastal environment was found to be warmer and drier than the inland environment, further suggesting local adaptation to microclimatic factors has lead to differential survival of resident and immigrant males. Our results suggest that low survival of immigrant males mediates isolation between closely located populations inhabiting different microclimatic environments.  相似文献   

11.
We used analytic and simulation models to determine the ecological conditions favoring evolution of a matrotrophic fish from a lecithotrophic ancestor given a complex set of trade-offs. Matrotrophy is the nourishment of viviparous embryos by resources provided between fertilization and parturition, while lecithotrophy describes embryo nourishment provided before fertilization. In fishes and reptiles, embryo nourishment encompasses a continuum from solely lecithotrophic to primarily matrotrophic. Matrotrophy has evolved independently from lecithotrophic ancestors many times in many groups. We assumed matrotrophy increased the number of offspring a viviparous female could gestate and evaluated conditions of food availability favoring lecithotrophy or matrotrophy. The matrotrophic strategy was superior when food resources exceeded demand during gestation but at a risk of overproduction and reproductive failure if food intake was limited. Matrotrophic females were leaner during gestation than lecithotrophic females, yielding shorter life spans. Our models suggest that matrotrophic embryo nourishment evolved in environments with high food availability, consistently exceeding energy requirements for maintaining relatively large broods. Embryo abortion with some resorption of invested energy is a necessary preadaptation to the evolution of matrotrophy. Future work should explore trade-offs of age-specific mortality and reproductive output for females maintaining different levels of fat storage during gestation.  相似文献   

12.
Predation can cause morphological divergence among populations, while ontogeny and sex often determine much of morphological diversity among individuals. We used geometric morphometrics to characterize body shape in the livebearing fish Brachyrhaphis rhabdophora to test for interactions between these three major shape-determining factors. We assessed shape variation between juveniles and adults of both sexes, and among adults for populations from high- and low-predation areas. Shape differed significantly between predation regimes for all juveniles regardless of sex. As males grew and matured into adults, ontogenetic shape trajectories were parallel, thus maintaining shape differences in adult males between predation environments. However, shape of adult females between predation environments followed a different pattern. As females grew and matured, ontogenetic shape trajectories converged so that shape differences were less pronounced between mature females in predator and nonpredator environments. Convergence in female body shape may indicate a trade-off between optimal shape for predator evasion versus shape required for the livebearing mode of reproduction.  相似文献   

13.
Mating can increase an individual''s risk of mortality by predation. In response to predation hazards, males in some species court females less often, but alternatively engage in coerced copulations more frequently and females become less selective. Such predator-mediated shifts in mating tactics may result in higher levels of multiple inseminations in females and, thus, in greater frequencies of females with broods of mixed paternity. We tested this hypothesis using two polymorphic microsatellite loci to estimate conservatively multiple paternity in broods of female guppies (Poecilia reticulata) originating from ten natural populations that have evolved under different fish predation regimes in Trinidad. The frequency of broods that were multiply sired was significantly greater on average in populations experiencing high predation pressure compared to populations experiencing a relatively low predation risk. These results suggest that the intensity of male sperm competition covaries geographically with predation pressure in this species and that the local risk of predation mediates the opportunity for sexual selection within populations.  相似文献   

14.
Geometric shape analyses were used to study body shape and size variation among populations of the livebearing fish Poecilia vivipara inhabiting the recently formed coastal lagoons of Grussaí and Iquipari in Northern Rio de Janeiro State, Brazil. The largest components of morphological variation among females were between different habitats in the same lagoon, whereas for males there were larger differences between lagoons than between habitats. The shape differences were mostly localized in the head region and midbody, which indicated different patterns of locomotion and foraging behaviour optimized for the habitat experienced by each population. The pattern of size variation was similar to that of size-independent shape variation.  相似文献   

15.
Provision of suitable habitat for waterbirds is a major challenge for environmental managers in arid and semiarid regions with high spatial and temporal variability in rainfall. It is understood in broad terms that to survive waterbirds must move according to phases of wet–dry cycles, with coastal habitats providing drought refugia and inland wetlands used during the wet phase. However, both inland and coastal wetlands are subject to major anthropogenic pressures, and the various species of waterbird may have particular habitat requirements and respond individualistically to spatiotemporal variations in resource distribution. A better understanding of the relationships between occurrence of waterbirds and habitat condition under changing climatic conditions and anthropogenic pressures will help clarify patterns of habitat use and the targeting of investments in conservation. We provide the first predictive models of habitat availability between wet and dry phases for six widely distributed waterbird species at a large spatial scale. We first test the broad hypothesis that waterbirds are largely confined to coastal regions during a dry phase. We then examine the contrasting results among the six species, which support other hypotheses erected on the basis of their ecological characteristics. There were large increases in area of suitable habitat in inland regions in the wet year compared with the dry year for all species, ranging from 4.14% for Australian White Ibis to 31.73% for Eurasian Coot. With over half of the suitable habitat for three of the six species was located in coastal zones during drought, our study highlights the need to identify and conserve coastal drought refuges. Monitoring of changes in extent and condition of wetlands, combined with distribution modeling of waterbirds, will help support improvements in the conservation and management of waterbirds into the future.  相似文献   

16.
Environmental change and habitat fragmentation will affect population densities for many species. For those species that have locally adapted to persist in changed or stressful habitats, it is uncertain how density dependence will affect adaptive responses. Anurans (frogs and toads) are typically freshwater organisms, but some coastal populations of green treefrogs (Hyla cinerea) have adapted to brackish, coastal wetlands. Tadpoles from coastal populations metamorphose sooner and demonstrate faster growth rates than inland populations when reared solitarily. Although saltwater exposure has adaptively reduced the duration of the larval period for coastal populations, increases in densities during larval development typically increase time to metamorphosis and reduce rates of growth and survival. We test how combined stressors of density and salinity affect larval development between salt‐adapted (“coastal”) and nonsalt‐adapted (“inland”) populations by measuring various developmental and metamorphic phenotypes. We found that increased tadpole density strongly affected coastal and inland tadpole populations similarly. In high‐density treatments, both coastal and inland populations had reduced growth rates, greater exponential decay of growth, a smaller size at metamorphosis, took longer to reach metamorphosis, and had lower survivorship at metamorphosis. Salinity only exaggerated the effects of density on the time to reach metamorphosis and exponential decay of growth. Location of origin affected length at metamorphosis, with coastal tadpoles metamorphosing slightly longer than inland tadpoles across densities and salinities. These findings confirm that density has a strong and central influence on larval development even across divergent populations and habitat types and may mitigate the expression (and therefore detection) of locally adapted phenotypes.  相似文献   

17.
Heterandria formosa is a viviparous poeciliid native of the southeastern of United States of America. H. formosa exhibits unique reproductive features as: (a) production of extremely small eggs with scarce quantity of yolk (microlecithal eggs), (b) consequently, a high level of matrotrophy and development of a complex follicular placenta, (c) ovarian sperm storage that allows the continuous fertilization of oocytes and production of offspring and (d) development of high degree of superfetation. The degree of superfetation refers to the number of broods in different simultaneous stages of gestation. Morphological evidence of the degree of superfetation in H. formosa has not been documented. Therefore, and because of the general interest in the complex process of superfetation, the goal of this study is to morphologically define the degree of superfetation of H. formosa through two procedures: (a) histological analysis of entire ovaries in gestation and (b) dissection of visible embryos and the histological analysis of the remaining ovarian tissue. Results indicate that H. formosa can gestate up to seven broods at the same time.  相似文献   

18.
Developmental instability was assessed in two geographical races of Teucrium lusitanicum using morphometric measures of vegetative and reproductive structures. T. lusitanicum is a gynodioecious species. Male sterile (female) individuals showed greater developmental instability at all sites. Plants located inland had higher developmental instability of vegetative characters and lower developmental instability of reproductive characters than coastal plants. These results support the contentions that (1) developmental instability is affected more by the disruption of co-adapted gene complexes than by lower heterozygosity, and (2) different habitat characteristics result in the differential response of vegetative and reproductive structures.  相似文献   

19.
Ultraviolet-B radiation is known as a noxious factor that destroys every life form. Plants that occupy the coastal area are assumed to be adaptive to UV-B as well as the other major stresses. The objective of this study was to clarify and compare (1) the flavonoid compositions of coastal and inland populations of Campanula punctata, and (2) UV-B effects on flavonoid content in plants originating from different habitats under uniform (i.e. experimental) and natural conditions. Flavonoid compositions of coastal and inland populations were shown to be identical. The UV-B exclusion experiment revealed two tendencies that were commonly observed in both coastal and inland populations: (1) the flavonoid accumulation decreased with an increase in degree of UV-B exclusion, and (2) the quantity of phenolic acids conversely became maximum under complete UV-B exclusion. Under the natural habitat conditions, significantly high accumulation of flavonoids were detected in two coastal populations even though no significant difference was found between the two other coastal populations and two inland populations. Weak correlations between UV-B intensity and flavonoid accumulation under the natural habitat conditions suggest that various micro-environmental factors may influence the production of flavonoids, and that the plants may acquire adaptive traits other than increasing flavonoids in order to inhabit the coastal environment.  相似文献   

20.
Life history strategies reflect trade-offs that tend to maximize fitness, such as investment in a few large or many small offspring. We compared life histories of two temperate livebearing fishes Gambusia affinis and G. nobilis, an endangered species which is virtually unstudied. The two species persist in environments that differ widely in abiotic and biotic factors in the same local area. Gambusia affinis were typically found in habitats with high productivity and wide fluctuations in temperature, salinity and dissolved oxygen, whereas G. nobilis occurred in more stable spring-fed habitats. We collected data on life-history traits: embryo mass, brood size (number of embryos), total maternal reproductive effort, population sex ratios, and size (mass and length) distributions of adults and juveniles. There was no difference between species in reproductive effort per brood, but they differed in investment strategy. Gambusia affinis females produced large broods with small embryos, whereas G. nobilis females produced broods of fewer, larger embryos. These differences in life history strategies reflect a tradeoff between individual productivity and differential mortality rates in different environments. At our field site G. affinis persists as an annual species with relatively high growth rates and corresponding reproductive patterns, whereas G. nobilis females have a slower reproductive tempo and may live multiple years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号