首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
荧光相关谱测量技术研究   总被引:1,自引:0,他引:1  
荧光相关谱(fluorescence correlation spectroscopy,FCS)是对处于热平衡态条件下的荧光分子发出的荧光强度涨落进行时间相关处理的一种单分子检测方法,能够直接测量分子在溶液里的扩散系数和浓度.影响FCS测量扩散系数准确性的因素有分子量子效率,测量时间,样本折射率和温度偏差等.用FCS分别测量溶有荧光染料罗丹明6G(rhodamine 6G,Rh.6G)和青色素Cy5甘油水溶液的粘滞系数,实验结果表明:荧光分子的量子效率是影响测量准确性的重要因素,要求其每秒发射的光子数目(photon counts per second,cps)至少达到1 000(photons/s).  相似文献   

2.
荧光相关谱技术及其应用   总被引:3,自引:1,他引:2  
基于对处于平衡态少量荧光分子集合的强度涨落进行时间平均的技术,荧光相关谱fluoreswceance correlation spectroscopy,FCS)技术最近已经应用于细胞环境过程的研究。FCS优秀的灵敏特性为我们实时测量许多参数提供了途径,而且具有快速的时间特性和高空间分辨率。测量的参数包括扩散速率、局部浓度、聚合状态和分子间的相互作用。荧光互相关谱(fluorescence cross-correlation spectroscopy,FCCS)进一步扩展了FCS技术的应用,包括在活细胞中的广泛应用。本文介绍了FCS技术的原理、实验装置及其应用。  相似文献   

3.
双光子激发荧光各向异性度的成像   总被引:2,自引:0,他引:2  
荧光各向异性度 (fluorescence anisotropy) 测量可以获得荧光分子的转动速度信息,进而了解分子质量、结构、以及与周边环境的相互作用情况 . 围绕一台双光子激发扫描荧光成像系统,通过改变外光路和图像记录与处理程序,从而实现了双光子激发荧光各向异性度成像,并针对一些典型样品和体系,展示了该方法的应用 . 实验中观察了 FITC 荧光分子、 FITC 结合的 CD44 抗体分子及与肿瘤细胞表面受体结合的 FITC-CD44 抗体分子 . 测量结果表明,不同分子质量、不同微观环境状态下的荧光分子,其各向异性度大小不同,在各向异性度图中能够被明显区分 . 荧光各向异性度成像能够定量测量样品微区的各向异性度值,并以二维图像的形式直观表达,是各向异性度测量与成像技术的良好结合 .  相似文献   

4.
荧光相关光谱检测技术具有超灵敏(单分子)、快速(数秒至数分钟)和多功能(检测分子浓度、大小和相互作用)等技术优点,且无需反应物分离,因此有潜力成为一种新型均相、高敏荧光免疫检测技术,适用于在溶液中或单个活细胞内检测生物分子特性.本文首先介绍荧光相关光谱检测技术的原理和研究进展,然后结合项目团队自主研发的目前全球唯一一款可靠、易使用的桌面式荧光相关光谱仪,进一步探讨荧光相关光谱检测技术的具体实现和潜在应用.  相似文献   

5.
荧光单分子检测技术是用荧光标记来显示和追踪单个分子的构象变化、动力学,单分子之间的相互作用以及单分子操纵的研究。过去对于生命科学分子机制的研究,都是对分子群体进行研究,然后平均化来进行单分子估测。因此,单个分子的动态性和独立性也被平均化掉而无法表现出来。荧光单分子检测技术真正实现了对单个分子的实时观测,将过去被平均化并隐藏在群体测量中不能获得的信息显示出来。近几年来,荧光单分子检测技术的飞速发展,为生命科学的发展,开辟了全新的研究领域。现就荧光单分子检测技术在研究动力蛋白、DNA转录、酶反应、蛋白质动态性和细胞信号转导方面的应用进展作一综述。  相似文献   

6.
活体细胞内双光子激发的光漂白特性   总被引:5,自引:0,他引:5  
长波长光的强穿透能力和对活体细胞和生物组织光毒性很小的特性,使得双光子激发荧光显微术已经成为无损伤成像的重要工具.可是双光子激发的高光子密度可能会产生高次光子相互作用, 从而产生更快的光漂白.从实验上研究了离体和活体细胞内的若丹明123和若丹明B分别在单光子激发和双光子激发时的光漂白特性.在体的实验结果与离体的实验结果一致.正如期望的一样,单光子激发时光漂白速率非常近似地随着激发功率的增加而线性增加.可是,双光子激发时的光漂白速率并不是正比于激发功率的平方,而是正比于激发功率的高次方(>3.5).对绿色荧光蛋白(GFP)变异体CFP和YFP的实验也得到同样的结果,这就表明高次光漂白可能是双(多)光子激发中的普遍现象.因此多光子的应用可能会受到强光漂白的限制.  相似文献   

7.
荧光相关光谱(fluorescence correlation spectroscopy,FCS)是一种通过监测荧光涨落从而获得单分子水平的分子扩散行为信息的技术。FCS高灵敏度的优点使得它已发展成为一种可以在活体外与活体内检测分子浓度、扩散系数、结合和解离常数等参数的有力工具。荧光互相关光谱(fluorescence cross-correlation spectroscopy,FCCS)是FCS技术的进一步发展,其大大扩展了FCS技术的应用范围。本文介绍了FCS及其衍生技术的原理及其在生物化学领域的应用。  相似文献   

8.
应用多光子激发激光扫描显微镜对5-羟色胺(5-hydroxytryptamine, 5-HT)孵育的大鼠粘膜型肥大细胞进行自发荧光成像,首次观察到了活细胞内5-HT相关的可见荧光,并对其产生机理进行了初步探讨.实现了对活细胞内5-HT空间分布的高分辨成像,为研究活组织或细胞内5-HT的空间分布和含量与细胞功能状态的关系提供了新的实验方法.  相似文献   

9.
单分子荧光检测越来越广泛地被应用于生命科学领域。这项技术可以对生物过程的化学机制进行定量、仔细的探究,与传统系综实验形成很好的互补。本文简介近几年单分子荧光检测研究的若干典型实例,以此展示这项技术的特点、优势及其可能的应用。它们涉及从简单的生化反应到复杂的蛋白表达调控等重要的生物过程。  相似文献   

10.
研究了人血清白蛋白中色氨酸的荧光红际激发效应,阐明了人血清白蛋白的红际激发效应与PH,温度及尿素浓度存在一定的关系,外界条件的改变使得色氨酸残基所处的微环境发生了变化,使得色氨酸残基的基态和激发态的能级产生不同的分布,从而得到不同的红际激发效应。  相似文献   

11.
Fluorescence Correlation Spectroscopy Measures Molecular Transport in Cells   总被引:3,自引:0,他引:3  
Fluorescence correlation spectroscopy (FCS) can measure dynamics of fluorescent molecules in cells. FCS measures the fluctuations in the number of fluorescent molecules in a small volume illuminated by a thin beam of excitation light. These fluctuations are processed statistically to yield an autocorrelation function from which rates of diffusion, convection, chemical reaction, and other processes can be extracted. The advantages of this approach include the ability to measure the mobility of a very small number of molecules, even down to the single molecule level, over a wide range of rates in very small regions of a cell. In addition to rates of diffusion and convection, FCS also provides unique information about the local concentration, states of aggregation and molecular interaction using fluctuation amplitude and cross-correlation methods. Recent advances in technology have rendered these once difficult measurements accessible to routine use in cell biology and biochemistry. This review provides a summary of the FCS method and describes current areas in which the FCS approach is being extended beyond its original scope.  相似文献   

12.
Fluorescence correlation spectroscopy (FCS) is a time-averaging fluctuation analysis of small molecular ensembles, combining maximum sensitivity with high statistical confidence. Among a multitude of physical parameters that are, in principle, accessible by FCS, it most conveniently allows to determine local concentrations, mobility coefficients, and characteristic rate constants of fast-reversible and slow-irreversible reactions of fluorescently labeled biomolecules at very low (nanomolar) concentrations, under equilibrium conditions and without physical separation. Its presently most popular instrumentation by confocal-microscope setups allows for a spatial resolution of fractions of femtoliters for the measurement volumes, containing sparse or even single molecules at any time, and encourages the adaptation of the solution-based technique for cellular applications. The scope of this review is thus, to introduce the FCS technique in particular to the reader with biological background, searching for new methods for a precise quantification of physical parameters governing cellular mechanisms and dynamics, especially if high sensitivity and fast dynamic resolution are required. After a short theoretical introduction, examples are given for the so far most important experimental applications, with respect to their implementation in cellular systems. As an interesting alternative to the confocal instrumentation, two-photon excitation will be introduced, offering a number of important advantages especially in cellular systems with high-noise and low-signal levels.  相似文献   

13.
An overview is presented which describes the development of fluorescence spectroscopy at the cellular level from its beginning as a quantitative tool to determine the content of cellular components to its present use. Analysis of individual biomolecules, their transport and kinetics within a single cell is now possible.  相似文献   

14.
刘敏  彭长德  刘一曼  施建 《激光生物学报》2010,19(5):575-579,586
利用蒙特卡洛方法构建了生物组织基于时域的时间分辨荧光光谱的仿真模型,并将应用该模型获得的模拟结果与生物组织的实验光谱进行了比较。结果表明:吸收系数与散射系数分别影响光谱的不同区域;低浓度情况下,模拟结果与实验光谱符合得较好(x^2〈1.2);高浓度下,实验光谱强度会被浓度效应削弱,以致影响其与模拟光谱的吻合程度。该方法为研究生物组织荧光光谱提供了一种新思路。  相似文献   

15.
We extended single molecule fluorescence imaging and time-resolved fluorometry from the green to the violet-excitation regime to find feasibility of detecting and identifying fluorescent analogs of nucleic-acid bases at the single-molecule level. Using violet excitation, we observed fluorescent spotsfrom single complexes composed of a nucleotide analogue and the Klenow fragmentof DNA polymerase I. Also, we implemented Raman imaging and spectroscopy of adenine molecules adsorbed on Ag colloidal nanoparticles to find feasibility of identifying nucleic-acid bases at the single-molecule level. Surface enhanced Raman scattering (SERS) of adenine molecules showed an intermittent on-and-off behavior called blinking. The observation of blinking provides substantial evidence for detecting single adenine molecules.  相似文献   

16.
Four days after the announcement of the 2014 Nobel Prize in Chemistry for “the development of super‐resolved fluorescence microscopy” based on single molecule detection, the Single Molecule Analysis in Real‐Time (SMART) Center at the University of Michigan hosted a “Principles of Single Molecule Techniques 2014” course. Through a combination of plenary lectures and an Open House at the SMART Center, the course took a snapshot of a technology with an especially broad and rapidly expanding range of applications in the biomedical and materials sciences. Highlighting the continued rapid emergence of technical and scientific advances, the course underscored just how brightly the future of the single molecule field shines. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 296–302, 2015.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号