首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diffuse panbronchiolitis affecting East Asians is strongly associated with the class I human leukocyte antigen (HLA) alleles. Recent observations suggest that a major disease-susceptibility gene may be located between the HLA-B and HLA-A loci in the class I region of the major histocompatibility complex on chromosome 6. To test this possibility, we analyzed 14 polymorphic markers in 92 Japanese patients and 93 healthy controls. Of these, seven marker alleles, including HLA-B54 and HLA-A11, were significantly associated with the disease. Maximum-likelihood haplotype analysis and subsequent direct determination of individual haplotypes identified a group of disease-associated haplotypes, one of which contained all seven disease-associated marker alleles. Another haplotype, containing HLA-B*5504, was also associated with the disease. All these haplotypes seem to have diverged from a common ancestral haplotype in East Asians and share a specific segment containing three consecutive markers between the S and TFIIH loci in the class I region. Furthermore, one of the markers within the candidate region showed the highest delta value, indicating the strongest association. Of 20 Korean patients with diffuse panbronchiolitis, 17 also shared the combination of the disease-associated marker alleles within the candidate region. These results indicate that an HLA-associated major susceptibility gene for diffuse panbronchiolitis is probably located within the 200 kb in the class I region 300 kb telomeric of the HLA-B locus on the chromosome 6p21.3.  相似文献   

2.
Qian D 《BMC genetics》2005,6(Z1):S79
Haplotype data contain signatures of ancestral alleles and increased information for mapping genes associated with complex traits. The motivation of this paper is to test the feasibility of a recently developed haplotype reconstruction algorithm and to perform haplotype-sharing correlation (HSC) analysis in nuclear families using data provided by the Genetic Analysis Workshop 14 and the Collaborative Study of the Genetics of Alcoholism. As an exemplary analysis, haplotype data on chromosomes 1-6 were reconstructed from genotype data in 93 nuclear families by minimizing both the recombinants in within-family haplotypes and the tree distance in between-family haplotypes. HSC analysis was performed using the best set of reconstructed haplotypes, and chromosome-wide significance was evaluated using a permutation procedure. Three markers were found to have significant haplotype associations with DSM-IV alcohol dependence that exceeded the 0.05 level of chromosome-wide significance: marker rs895941 at 36.7 cM on chromosome 3 (p = 0.03), marker rs1631833 at 109.1 cM on chromosome 4 (p = 0.008), and marker rs953887 at 74.2 cM on chromosome 6 (p = 0.02). These results indicated the usefulness of HSC analysis and provided further evidence on chromosome regions associated with alcohol dependence.  相似文献   

3.
Posterior polymorphous corneal dystrophy (PPCD) is a rare autosomal dominant genetically heterogeneous disorder. Nineteen Czech PPCD pedigrees with 113 affected family members were identified, and 17 of these kindreds were genotyped for markers on chromosome 20p12.1- 20q12. Comparison of haplotypes in 81 affected members, 20 unaffected first degree relatives and 13 spouses, as well as 55 unrelated controls, supported the hypothesis of a shared ancestor in 12 families originating from one geographic location. In 38 affected individuals from nine of these pedigrees, a common haplotype was observed between D20S48 and D20S107 spanning approximately 23 Mb, demonstrating segregation of disease with the PPCD1 locus. This haplotype was not detected in 110 ethnically matched control chromosomes. Within the common founder haplotype, a core mini-haplotype was detected for D20S605, D20S182 and M189K2 in all 67 affected members from families 1–12, however alleles representing the core mini-haplotype were also detected in population matched controls. The most likely location of the responsible gene within the disease interval, and estimated mutational age, were inferred by linkage disequilibrium mapping (DMLE+2.3). The appearance of a disease-causing mutation was dated between 64–133 generations. The inferred ancestral locus carrying a PPCD1 disease-causing variant within the disease interval spans 60 Kb on 20p11.23, which contains a single known protein coding gene, ZNF133. However, direct sequence analysis of coding and untranslated exons did not reveal a potential pathogenic mutation. Microdeletion or duplication was also excluded by comparative genomic hybridization using a dense chromosome 20 specific array. Geographical origin, haplotype and statistical analysis suggest that in 14 unrelated families an as yet undiscovered mutation on 20p11.23 was inherited from a common ancestor. Prevalence of PPCD in the Czech Republic appears to be the highest worldwide and our data suggests that at least one other novel locus for PPCD also exists.  相似文献   

4.
We have explored the use of multilocus microsatellite haplotypes to study introgression from cultivated (Malus domestica) into wild apple (Malus sylvestris), and to study gene flow among remnant populations of M. sylvestris. A haplotype consisted of alleles at microsatellite loci along one chromosome. As destruction of haplotypes through recombination occurs much faster than loss of alleles due to genetic drift, the lifespan of a multilocus haplotype is much shorter than that of the underlying alleles. When different populations share the same haplotype, this may indicate recent gene flow between populations. Similarly, haplotypes shared between two species would be a strong signal for introgression. As the expected lifespan of a haplotype depends on the strength of the linkage, the length [in centiMorgans (cM)] of the haplotype shared contains information on the number of generations passed. This application of shared haplotypes is distinct from using haplotype-sharing to detect association between markers and a certain trait. We inferred haplotypes for four to eight microsatellite loci on Linkage Group 10 of apple from genotype data using the program phase, and then identified those haplotypes shared between populations and species. Compared with a Bayesian analysis of unlinked microsatellite loci using the program structure, haplotype-sharing detected a partially different set of putative hybrids. Cultivated haplotypes present in M. sylvestris were short (< 1.5 cM), indicating that introgression had taken place many generations ago, except for two Belgian plants that contained a haplotype of 47.1 cM, indicating recent introgression. In the estimation of gene flow, F(ST) based on unlinked loci indicated small (0.032-0.058) but statistically significant differentiation between some populations only. However, various M. sylvestris haplotypes were shared in nearly all pairwise comparisons of populations, and their length indicated recent gene flow. Hence, all Dutch populations should be considered as one conservation unit. The added value of using sharing of multilocus microsatellite haplotypes as a source of population genetic information is discussed.  相似文献   

5.
PGL1, a gene responsible for hereditary paragangliomas of the head and neck, recently was mapped to a 2-cM interval on chromosome 11q22-q23, by linkage and haplotype-sharing analysis of a large multibranch Dutch family. We determined the disease-linked haplotype, as defined by 13 markers encompassing a large interval on 11q21-q23, in 10 additional families ascertained from the same geographical locale. Alleles were identical for six contiguous markers, spanning a genetic distance of 6 cM and containing PGL1. Despite this strong indication of a common ancestor, no kinships between the families could be demonstrated through genealogical surveys going back to 1800 a.d. We conclude that a single ancestral mutation is responsible for most, if not all, hereditary paragangliomas, in this region of The Netherlands, and that strong founder effects may exist at the PGL1 locus.  相似文献   

6.
Studies using haplotypes of multiple tightly linked markers are more informative than those using a single marker. However, studies based on multimarker haplotypes have some difficulties. First, if we consider each haplotype as an allele and use the conventional single-marker transmission/disequilibrium test (TDT), then the rapid increase in the degrees of freedom with an increasing number of markers means that the statistical power of the conventional tests will be low. Second, the parental haplotypes cannot always be unambiguously reconstructed. In the present article, we propose a haplotype-sharing TDT (HS-TDT) for linkage or association between a disease-susceptibility locus and a chromosome region in which several tightly linked markers have been typed. This method is applicable to both quantitative traits and qualitative traits. It is applicable to any size of nuclear family, with or without ambiguous phase information, and it is applicable to any number of alleles at each of the markers. The degrees of freedom (in a broad sense) of the test increase linearly as the number of markers considered increases but do not increase as the number of alleles at the markers increases. Our simulation results show that the HS-TDT has the correct type I error rate in structured populations and that, in most cases, the power of HS-TDT is higher than the power of the existing single-marker TDTs and haplotype-based TDTs.  相似文献   

7.
Although psoriasis is strongly associated with certain human leukocyte antigens (HLAs), evidence for linkage to HLA markers has been limited. The objectives of this study were (1) to provide more definitive evidence for linkage of psoriasis to HLA markers in multiplex families; (2) to compare the major HLA risk alleles in these families with those determined by previous case-control studies; and (3) to localize the gene more precisely. By applying the transmission/disequilibrium test (TDT) and parametric linkage analysis, we found evidence for linkage of psoriasis to HLA-C, -B, -DR, and -DQ, with HLA-B and -C yielding the most-significant results. Linkage was detectable by parametric methods only when marker-trait disequilibrium was considered. Case-control association tests and the TDT identified alleles belonging to the EH57.1 ancestral haplotype as the major risk alleles in our sample. Among individuals carrying recombinant ancestral haplotypes involving EH57. 1, the class I markers were retained selectively among affecteds four times more often than among unaffecteds; among the few affected individuals carrying only the class II alleles from the ancestral haplotype, all but one also carried Cw6. These data show that familial and "sporadic" psoriasis share the same risk alleles. They also illustrate that substantial parametric linkage information can be extracted by accounting for linkage disequilibrium. Finally, they strongly suggest that a major susceptibility gene resides near HLA-C.  相似文献   

8.
Age at the onset of motor symptoms in Huntington disease (HD) is determined largely by the length of a CAG repeat expansion in HTT but is also influenced by other genetic factors. We tested whether common genetic variation near the mutation site is associated with differences in the distribution of expanded CAG alleles or age at the onset of motor symptoms. To define disease-associated single-nucleotide polymorphisms (SNPs), we compared 4p16.3 SNPs in HD subjects with population controls in a case:control strategy, which revealed that the strongest signals occurred at a great distance from the HD mutation as a result of "synthetic association" with SNP alleles that are of low frequency in population controls. Detailed analysis delineated a prominent ancestral haplotype that accounted for ~50% of HD chromosomes and extended to at least 938 kb on about half of these. Together, the seven most abundant haplotypes accounted for ~83% of HD chromosomes. Neither the extended shared haplotype nor the individual local HTT haplotypes were associated with altered CAG-repeat length distribution or residual age at the onset of motor symptoms, arguing against modification of these disease features by common cis-regulatory elements. Similarly, the 11 most frequent control haplotypes showed no trans-modifier effect on age at the onset of motor symptoms. Our results argue against common local regulatory variation as a factor influencing HD pathogenesis, suggesting that genetic modifiers be sought elsewhere in the genome. They also indicate that genome-wide association analysis with a small number of cases can be effective for regional localization of genetic defects, even when a founder effect accounts for only a fraction of the disorder.  相似文献   

9.
To refine the location of a disease gene within the bounds provided by linkage analysis, many scientists use the pattern of linkage disequilibrium between the disease allele and alleles at nearby markers. We describe a method that seeks to refine location by analysis of "disease" and "normal" haplotypes, thereby using multivariate information about linkage disequilibrium. Under the assumption that the disease mutation occurs in a specific gap between adjacent markers, the method first combines parsimony and likelihood to build an evolutionary tree of disease haplotypes, with each node (haplotype) separated, by a single mutational or recombinational step, from its parent. If required, latent nodes (unobserved haplotypes) are incorporated to complete the tree. Once the tree is built, its likelihood is computed from probabilities of mutation and recombination. When each gap between adjacent markers is evaluated in this fashion and these results are combined with prior information, they yield a posterior probability distribution to guide the search for the disease mutation. We show, by evolutionary simulations, that an implementation of these methods, called "FineMap," yields substantial refinement and excellent coverage for the true location of the disease mutation. Moreover, by analysis of hereditary hemochromatosis haplotypes, we show that FineMap can be robust to genetic heterogeneity.  相似文献   

10.
Dense genotype data can be used to detect chromosome fragments inherited from a common ancestor in apparently unrelated individuals. A disease-causing mutation inherited from a common founder may thus be detected by searching for a common haplotype signature in a sample population of patients. We present here FounderTracker, a computational method for the genome-wide detection of founder mutations in cancer using dense tumor SNP profiles. Our method is based on two assumptions. First, the wild-type allele frequently undergoes loss of heterozygosity (LOH) in the tumors of germline mutation carriers. Second, the overlap between the ancestral chromosome fragments inherited from a common founder will define a minimal haplotype conserved in each patient carrying the founder mutation. Our approach thus relies on the detection of haplotypes with significant identity by descent (IBD) sharing within recurrent regions of LOH to highlight genomic loci likely to harbor a founder mutation. We validated this approach by analyzing two real cancer data sets in which we successfully identified founder mutations of well-characterized tumor suppressor genes. We then used simulated data to evaluate the ability of our method to detect IBD tracts as a function of their size and frequency. We show that FounderTracker can detect haplotypes of low prevalence with high power and specificity, significantly outperforming existing methods. FounderTracker is thus a powerful tool for discovering unknown founder mutations that may explain part of the "missing" heritability in cancer. This method is freely available and can be used online at the FounderTracker website.  相似文献   

11.
Linkage disequilibrium (LD) mapping may be a powerful means for genome screening to identify susceptibility loci for common diseases. A new statistical approach for detection of LD around a disease gene is presented here. This method compares the distribution of haplotypes in affected individuals versus that expected for individuals descended from a common ancestor who carried a mutation of the disease gene. Simulations demonstrate that this method, which we term "ancestral haplotype reconstruction" (AHR), should be powerful for genome screening of phenotypes characterized by a high degree of etiologic heterogeneity, even with currently available marker maps. AHR is best suited to application in isolated populations where affected individuals are relatively recently descended (< approximately 25 generations) from a common disease mutation-bearing founder.  相似文献   

12.
Hemochromatosis (HC), an inherited disorder of iron metabolism, shows a very strong founder effect in Australia, with the majority of patients being of Celtic (Scots/Irish) origin. Australian HC patients thus provide an ideal group in which to examine HC-gene-region haplotypes, to analyze the extent of linkage disequilibrium and genetic heterogeneity in HC. We have analyzed chromosomes from 26 multiply affected HC pedigrees, and we were able to assign HC status unambiguously to 107 chromosomes--64 as affected and 43 as unaffected. The haplotypes examined comprise the following highly polymorphic markers: the serological marker HLA-A and the microsatellites D6S248, D6S265, HLA-F, and D6S105. All show highly significant allelic association with HC and no evidence of separation from the disease locus by recombination. Analysis identified a predominant ancestral haplotype comprising alleles 5-1-3-2-8 (marker order: D6S248-D6S265-HLA-A-HLA-F-D6S105), present in 21 (33%) of 64 affected chromosomes, and exclusively associated with HC (haplotype relative risk 903). No other common haplotype was significantly associated with HC. Haplotype analysis in Australian HC patients thus provides strong evidence for (a) the introduction of HC into this population on an ancestral haplotype, (b) a common mutation associated with HC in Australian patients, and (c) a candidate HC-gene region extending between and including D6S248 and D6S105.  相似文献   

13.
The leucine-rich repeat kinase 2 (LRRK2) G2019S mutation is the most common genetic determinant of Parkinson disease (PD) identified to date. It accounts for 1%-7% of PD in patients of European origin and 20%-40% in Ashkenazi Jews and North African Arabs with PD. Previous studies concluded that patients from these populations all shared a common Middle Eastern founder who lived in the 13th century. We tested this hypothesis by genotyping 25 microsatellite and single-nucleotide-polymorphism markers in 22 families with G2019S and observed two distinct haplotypes. Haplotype 1 was present in 19 families of Ashkenazi Jewish and European ancestry, whereas haplotype 2 occurred in three European American families. Using a maximum-likelihood method, we estimated that the families with haplotype 1 shared a common ancestor 2,250 (95% confidence interval 1,650-3,120) years ago, whereas those with haplotype 2 appeared to share a more recent founder. Our data suggest two separate founding events for G2019S in these populations, beginning at a time that coincides with the Jewish Diasporas.  相似文献   

14.
Hereditary hemochromatosis is a recessive disease of iron metabolism widely distributed among people of European descent. Most patients have inherited the causative mutation from a single ancestor. In the course of cloning the hemochromatosis gene, genotypes were generated for these samples at 43 microsatellite repeat markers that span the 6.5-Mb hemochromatosis gene region. The data used to reconstruct the ancestral haplotype across the hemochromatosis gene region are presented in this paper. Portions of the ancestral haplotype were present on 85% of patient chromosomes in this sample and ranged in size from approximately 500 kb to greater than 6.5 Mb. Only one marker, D6S2239, was identical by descent on all of the patient chromosomes containing the ancestral mutation. In contrast, only 3 of the 128 control chromosomes, or 2.3%, carried the ancestral mutation and the surrounding ancestral haplotype. To test new methods for gene finding using linkage disequilibrium we analyzed the genotypic data with a multilocus maximum likelihood method (DISMULT) and a single point method (DISLAMB), both written to analyze data generated from multi-allelic markers. The maximum value from DISLAMB analysis occurred at marker D6S2239, which is less than 20 kb from the hemochromatosis gene HFE, consistent with the haplotype analysis. The peak of the multi-point analysis was 700 kb from HFE, possibly due to the nonuniform recombination rates within this large region. The recombination rate appears to be lower than expected centromeric of the HFE gene. Received: 10 June 1997 / Accepted: 4 December 1997  相似文献   

15.
Creutzfeldt-Jakob disease (CJD) belongs to a group of prion diseases that may be infectious, sporadic, or hereditary. The 200K point mutation in the PRNP gene is the most frequent cause of hereditary CJD, accounting for >70% of families with CJD worldwide. Prevalence of the 200K variant of familial CJD is especially high in Slovakia, Chile, and Italy, and among populations of Libyan and Tunisian Jews. To study ancestral origins of the 200K mutation-associated chromosomes, we selected microsatellite markers flanking the PRNP gene on chromosome 20p12-pter and an intragenic single-nucleotide polymorphism at the PRNP codon 129. Haplotypes were constructed for 62 CJD families originating from 11 world populations. The results show that Libyan, Tunisian, Italian, Chilean, and Spanish families share a major haplotype, suggesting that the 200K mutation may have originated from a single mutational event, perhaps in Spain, and spread to all these populations with Sephardic migrants expelled from Spain in the Middle Ages. Slovakian families and a family of Polish origin show another unique haplotype. The haplotypes in families from Germany, Sicily, Austria, and Japan are different from the Mediterranean or eastern European haplotypes. On the basis of this study, we conclude that founder effect and independent mutational events are responsible for the current geographic distribution of hereditary CJD associated with the 200K mutation.  相似文献   

16.
Rare germline mutations in TP53 (17p13.1) cause a highly penetrant predisposition to a specific spectrum of early cancers, defining the Li-Fraumeni Syndrome (LFS). A germline mutation at codon 337 (p.Arg337His, c1010G>A) is found in about 0.3% of the population of Southern Brazil. This mutation is associated with partially penetrant LFS traits and is found in the germline of patients with early cancers of the LFS spectrum unselected for familial history. To characterize the extended haplotypes carrying the mutation, we have genotyped 9 short tandem repeats on chromosome 17p in 12 trios of Brazilian p.Arg337His carriers. Results confirm that all share a common ancestor haplotype of Caucasian/Portuguese-Iberic origin, distant in about 72–84 generations (2000 years assuming a 25 years intergenerational distance) and thus pre-dating European migration to Brazil. So far, the founder p.Arg337His haplotype has not been detected outside Brazil, with the exception of two residents of Portugal, one of them of Brazilian origin. On the other hand, increased meiotic recombination in p.Arg337His carriers may account for higher than expected haplotype diversity. Further studies comparing haplotypes in populations of Brazil and of other areas of Portuguese migration are needed to understand the historical context of this mutation in Brazil.  相似文献   

17.
With 10 segregating sites (simple nucleotide polymorphisms) in the last intron (1089 bp) of the ZFX gene we have observed 11 haplotypes in 336 chromosomes representing a worldwide array of 15 human populations. Two haplotypes representing 77% of all chromosomes were distributed almost evenly among four continents. Five of the remaining haplotypes were detected in Africa and 4 others were restricted to Eurasia and the Americas. Using the information about the ancestral state of the segregating positions (inferred from human-great ape comparisons), we applied coalescent analysis to estimate the age of the polymorphisms and the resulting haplotypes. The oldest haplotype, with the ancestral alleles at all the sites, was observed at low frequency only in two groups of African origin. Its estimated age of 740 to 1100 kyr corresponded to the time to the most recent common ancestor. The two most frequent worldwide distributed haplotypes were estimated at 550 to 840 and 260 to 400 kyr, respectively, while the age of the continentally restricted polymorphisms was 120 to 180 kyr and smaller. Comparison of spatial and temporal distribution of the ZFX haplotypes suggests that modern humans diverged from the common ancestral stock in the Middle Paleolithic era. Subsequent range expansion prevented substantial gene flow among continents, separating African groups from populations that colonized Eurasia and the New World.  相似文献   

18.
Werner syndrome (WS) is an autosomal recessive disorder characterized by premature onset of a number of age-related diseases. The gene for WS, WRN, has been mapped to the 8p 11.1-21.1 region with further localization through linkage disequilibrium mapping. Here we present the results of linkage disequilibrium and ancestral haplotype analyses of 35 markers to further refine the location of WRN. We identified an interval in this region in which 14 of 18 markers tested show significant evidence of linkage disequilibrium in at least one of the two populations tested. Analysis of extended and partial haplotypes covering 21 of the markers studied supports the existence of both obligate and probable ancestral recombinant events which localize WRN almost certainly to the interval between D8S2196 and D8S2186, and most likely to the narrower interval between D8S2168 and D8S2186. These haplotype analyses also suggest that there are multiple WRN mutations in each of the two populations under study. We also present a comparison of approaches to performing disequilibrium tests with multiallelic markers, and show that some commonly used approximations for such tests perform poorly in comparison to exact probability tests. Finally, we discuss some of the difficulties introduced by the high mutation rate at microsatellite markers which influence our ability to use ancestral haplotype analysis to localize disease genes.  相似文献   

19.
Blocks of linkage disequilibrium (LD) in the human genome represent segments of ancestral chromosomes. To investigate the relationship between LD and genealogy, we analysed diversity associated with restriction fragment length polymorphism (RFLP) haplotypes of the 5' beta-globin gene complex. Genealogical analyses were based on sequence alleles that spanned a 12.2-kb interval, covering 3.1 kb around the psibeta gene and 6.2 kb of the delta-globin gene and its 5' flanking sequence known as the R/T region. Diversity was sampled from a Kenyan Luo population where recent malarial selection has contributed to substantial LD. A single common sequence allele spanning the 12.2-kb interval exclusively identified the ancestral chromosome bearing the "Bantu" beta(s) (sickle-cell) RFLP haplotype. Other common 5' RFLP haplotypes comprised interspersed segments from multiple ancestral chromosomes. Nucleotide diversity was similar between psibeta and R/T-delta-globin but was non-uniformly distributed within the R/T-delta-globin region. High diversity associated with the 5' R/T identified two ancestral lineages that probably date back more than 2 million years. Within this genealogy, variation has been introduced into the 3' R/T by gene conversion from other ancestral chromosomes. Diversity in delta-globin was found to lead through parts of the main genealogy but to coalesce in a more recent ancestor. The well-known recombination hotspot is clearly restricted to the region 3' of delta-globin. Our analyses show that, whereas one common haplotype in a block of high LD represents a long segment from a single ancestral chromosome, others are mosaics of short segments from multiple ancestors related in genealogies of unsuspected complexity.  相似文献   

20.
Five sequence polymorphisms at the phenylalanine hydroxylase (PAH) gene locus were observed to be in tight association with specific alleles of this locus. Since these polymorphisms can be detected using polymerase chain reaction (PCR) methodology, application of a combination of these polymorphisms reduces the effort involved in PAH DNA haplotype analysis, which is needed for population genetic analysis or diagnosis of the disease status. In addition our results indicate the evolution of haplotype 3, 4 and 7 PAH alleles from a common ancestor, whereas PAH haplotypes 5, 6, and 11 arose form another common ancestor allele. These data reveal that two of the polymorphisms investigated originated before the separation of races.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号