首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The Neurospora crassa plasma membrane H+-ATPase is rapidly inactivated in the presence of diethyl pyrocarbonate (DEP). The reaction is pseudo-first-order showing time- and concentration-dependent inactivation with a second-order rate constant of 385-420 M-1.min-1 at pH 6.9 and 25 degrees C. The difference spectrum of the native and modified enzyme has a maximum near 240 nm, characteristic of N-carbethoxyhistidine. No change in the absorbance of the inhibited ATPase at 278 nm or in the number of modifiable sulfhydryl groups is observed, indicating that the inhibition is not due to tyrosine or cysteine modification, and the inhibition is irreversible, ruling out serine residues. Furthermore, pretreatment of the ATPase with pyridoxal phosphate/NaBH4 under the conditions of the DEP treatment does not inhibit the ATPase and does not alter the DEP inhibition kinetics, indicating that the inactivation by DEP is not due to amino group modification. The pH dependence of the inactivation reaction indicates that the essential residue has a pKa near 7.5, and the activity lost as a result of H+-ATPase modification by DEP is partially recovered after hydroxylamine treatment at 4 degrees C. Taken together, these results strongly indicate that the inactivation of the H+-ATPase by DEP involves histidine modification. Analyses of the inhibition kinetics and the stoichiometry of modification indicate that among eight histidines modified per enzyme molecule, only one is essential for H+-ATPase activity. Finally, ADP protects against inactivation by DEP, indicating that the essential residue modified may be located at or near the nucleotide binding site.  相似文献   

2.
Vacuolar proton pumping pyrophosphatase (H(+)-PPase; EC 3.6.1.1) plays a pivotal role in electrogenic translocation of protons from cytosol to the vacuolar lumen at the expense of PP(i) hydrolysis. Alignment analysis on amino acid sequence demonstrates that vacuolar H(+)-PPase of mung bean contains six highly conserved histidine residues. Previous evidence indicated possible involvement of histidine residue(s) in enzymatic activity and H(+)-translocation of vacuolar H(+)-PPase as determined by using histidine specific modifier, diethylpyrocarbonate [J. Protein Chem. 21 (2002) 51]. In this study, we further attempted to identify the roles of histidine residues in mung bean vacuolar H(+)-PPase by site-directed mutagenesis. A line of mutants with histidine residues singly replaced by alanine was constructed, over-expressed in Saccharomyces cerevisiae, and then used to determine their enzymatic activities and proton translocations. Among the mutants scrutinized, only the mutation of H716 significantly decreased the enzymatic activity, the proton transport, and the coupling ratio of vacuolar H(+)-PPase. The enzymatic activity of H716A is relatively resistant to inhibition by diethylpyrocarbonate as compared to wild-type and other mutants, indicating that H716 is probably the target residue for the attack by this modifier. The mutation at H716 of V-PPase shifted the optimum pH value but not the T(1/2) (pretreatment temperature at which half enzymatic activity is observed) for PP(i) hydrolytic activity. Mutation of histidine residues obviously induced conformational changes of vacuolar H(+)-PPase as determined by immunoblotting analysis after limited trypsin digestion. Furthermore, mutation of these histidine residues modified the inhibitory effects of F(-) and Na(+), but not that of Ca(2+). Single substitution of H704, H716 and H758 by alanine partially released the effect of K(+) stimulation, indicating possible location of K(+) binding in the vicinity of domains surrounding these residues.  相似文献   

3.
The isoform 1 of cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) from Paenibacillus sp. A11 was purified by a preparative gel electrophoresis. The importance of histidine, tryptophan, tyrosine, and carboxylic amino acids for isoform 1 activity is suggested by the modification of the isoform 1 with various group-specific reagents. Activity loss, when incubated with diethylpyrocarbonate (DEP), a histidine modifying reagent, could be protected by adding 25 mM methyl-beta-cyclodextrin substrate prior to the modification. Inactivation kinetics of isoform 1 with DEP resulted in second-order rate constants (k(inactivation)) of 29.5 M(-1)s(-1). The specificity of the DEP-modified reaction for the histidine residue was shown by the correlation between the loss of isoform activity and the increase in the absorbance at 246 nm of N-carbethoxyhistidine. The number of histidines that were modified by DEP in the absence and presence of a protective substrate was estimated from the increase in the absorbance using a specific extinction coefficient of N-carbethoxyhistidine of 3,200 M(-1)cm(-1). It was discovered that methyl-beta-CD protected per mole of isoform 1, two histidine residues from the modification by DEP. To localize essential histidines, the native, the DEP-modified, and the protected forms of isoform 1 were digested by trypsin. The resulting peptides were separated by HPLC. The peptides of interest were those with R(t) 11.34 and 40.93 min. The molecular masses of the two peptides were 5,732 and 2,540 daltons, respectively. When the data from the peptide analysis were checked with the sequence of CGTase, then His-140 and His-327 were identified as essential histidines in the active site of isoform 1.  相似文献   

4.
Alkaline phosphatase from Megalobatrachus japonicus was inactivated by diethyl pyrocarbonate (DEP). The inactivation followed pseudo-first-order kinetics with a second-order rate constant of 176 M(-1) x min(-1) at pH 6.2 and 25 degrees C. The loss of enzyme activity was accompanied with an increase in absorbance at 242 nm and the inactivated enzyme was re-activated by hydroxylamine, indicating the modification of histidine residues. This conclusion was also confirmed by the pH profiles of inactivation, which showed the involvement of a residue with pK(a) of 6.6. The presence of glycerol 3-phosphate, AMP and phosphate protected the enzyme against inactivation. The results revealed that the histidine residues modified by DEP were located at the active site. Spectrophotometric quantification of modified residues showed that modification of two histidine residues per active site led to complete inactivation, but kinetic stoichiometry indicated that one molecule of modifier reacted with one active site during inactivation, probably suggesting that two essential histidine residues per active site are necessary for complete activity whereas modification of a single histidine residue per active site is enough to result in inactivation.  相似文献   

5.
Vacuolar proton pumping pyrophosphatase (H(+)-PPase; EC 3.6.1.1) plays a central role in the electrogenic translocation of protons from cytosol to the vacuole lumen at the expense of PP(i) hydrolysis. A fluorescent probe, fluorescein 5'-isothiocyanate (FITC), was used to modify a lysine residue of vacuolar H(+)-PPase. The enzymatic activity and its associated H(+) translocation of vacuolar H(+)-PPase were markedly decreased by FITC in a concentration-dependent manner. The inhibition of enzymatic activity followed pseudo-first-order rate kinetics. A double-logarithmic plot of the apparent reaction rate constant against FITC concentration yielded a straight line with a slope of 0.89, suggesting that the alteration of a single lysine residue on the enzyme is sufficient to inhibit vacuolar H(+)-PPase. Changes in K(m) but not V(max) values of vacuolar H(+)-PPase as inhibited by FITC were obtained, indicating that the labeling caused a modification in affinity of the enzyme to its substrate. FITC inhibition of vacuolar H(+)-PPase could be protected by its physiological substrate, Mg(2+)-PP(i). These results indicate that FITC might specifically compete with the substrate at the active site and the FITC-labeled lysine residue locates probably in or near the catalytic domain of the enzyme. The enhancement of fluorescence intensity and the blue shift of the emission maximum of FITC after modification of vacuolar H(+)-PPase suggest that the FITC-labeled lysine residue is located in a relatively hydrophobic region.  相似文献   

6.
o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme.  相似文献   

7.
3-Ketovalidoxylamine A C-N lyase of Flavobacterium saccharophilum is a monomeric protein with a molecular weight of 36,000. Amino acid analysis revealed that the enzyme contains 5 histidine residues and no cysteine residue. The enzyme was inactivated by diethylpyrocarbonate (DEP) following pseudo-first order kinetics. Upon treatment of the inactivated enzyme with hydroxylamine, the enzyme activity was completely restored. The difference absorption spectrum of the modified versus native enzyme exhibited a prominent peak around 240 nm, but there was no absorbance change above 270 nm. The pH-dependence of inactivation suggested the involvement of an amino acid residue having a pKa of 6.8. These results indicate that the inactivation is due to the modification of histidine residues. Substrates of the lyase, p-nitrophenyl-3-ketovalidamine, p-nitrophenyl-alpha-D-3-ketoglucoside, and methyl-alpha-D-3-ketoglucoside, protected the enzyme against the inactivation, suggesting that the modification occurred at or near the active site. Although several histidine residues were modified by DEP, a plot of log (reciprocal of the half-time of inactivation) versus log (concentration of DEP) suggested that one histidine residue has an essential role in catalysis.  相似文献   

8.
A W Abdulwajid  F Y Wu 《Biochemistry》1986,25(25):8167-8172
RNA polymerase (RPase) from Escherichia coli contains five subunits (alpha 2 beta beta' sigma) and two intrinsic Zn ions located in the beta and beta' subunits. This enzyme was rapidly inactivated by diethyl pyrocarbonate (DEP) at pH 6.0 and 25 degrees C. The difference spectrum of the DEP-inactivated and native RPases showed a single peak at 240 nm indicating the formation of N-carbethoxyhistidines. No decrease in absorbance at 278 nm, due to O-carbethoxytyrosine, or modification of amino and sulfhydryl groups was observed. Inactivated RPase with six to nine histidines being modified could be fully reactivated by incubation with 0.5 M hydroxylamine at pH 6.0 and room temperature for 1 h. No structural difference was detected between the native and modified enzymes as evidenced by UV/visible and fluorescence spectra, sodium dodecyl sulfate-polyacrylamide gel electrophoretic pattern, or gel filtration properties. Substrate ATP at 0.11 and 1.14 mM concentrations provided, respectively, 25% and 90% protection against DEP inactivation, while template DNA did not. These results suggest that one or more histidine residues is/are in close proximity to the substrate binding site. The pH dependence of the DEP inactivation of RPase suggested the modification of histidine at the active site with a pK value of 6.9. The inactivation of RPase by DEP and the formation of N-carbethoxyhistidine displayed a similar second-order rate constant of approximately 0.9 mM-1 min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Chalcone isomerase form soybean is inactivated by treatment with diethyl pyrocarbonate (DEP). The competitive inhibitor 4',4-dihydroxychalcone provides kinetic protection against inactivation by DEP with a binding constant at the site of protection in agreement with its binding constant at the active site. Very high concentrations of the competitive inhibitors 4',4-dihydroxychalcone or morin hydrate offer a 10- to 40-fold maximal protection, suggesting a second slower mechanism for inactivation which cannot be prevented by blockage of the active site. Blockage of the only cysteine residue in chalcone isomerase with p-mercuribenzoate does not affect the rate constant for DEP-dependent inactivation and indicates that the modification of the cysteine residue is not responsible for the activity loss observed in the presence of DEP. Treatment of inactivated enzyme with hydroxylamine does not restore catalytic activity, indicating that the modification of histidine or tyrosine residues is not responsible for the activity loss. All five histidines of chalcone isomerase are modified by DEP at pH 5.7 and ionic strength 1.0 M. The rate constant for the modification of the histidine residues of chalcone isomerase is close to that for the reaction of N-acetyl histidine with DEP, indicating that the histidine residues are quite accessible to the modifying reagent. The rate of histidine modification is the same in native enzyme, in urea-denatured enzyme, and in the presence of a competitive inhibitor. In the presence of the competitive inhibitor morin hydrate, all of the histidine residues of chalcone isomerase can be modified without significant loss in catalytic activity. These results demonstrate that the histidine residues of chalcone isomerase are not essential for catalysis and therefore cannot function as nucleophilic catalysts as previously proposed.  相似文献   

10.
1. The effect of diethylpyrocarbonate (DEP) (0.1-0.35 mM) on the purified pig liver amino-levulic acid dehydratase (ALA-D) containing 0.3 g-atoms Zn/subunit, under different pHs (6.0-7.5), temperature (0-18 degrees C) and time (0-60 min) was studied. 2. Three histidyl residues/subunit were modified by DEP (0.2 mM, pH 6.8), but activity was completely lost after the first one had reacted, indicating the presence of one histidine residue essential for ALA-D catalysis. Reactivation by treatment with hydroxylamine (0.7 mM, pH 7.0) confirmed that only histidine and no other nucleophile amino acids were directly involved in DEP inhibition. 3. Zn ions (0.5 mM) and the substrate ALA (5-10 mM) protected against DEP inactivation, protection was dependent on pH. 4. Sn, Se, Hg, Cd, Mn, Co and Pb (0.01-0.1 mM) did not significantly protect ALA-D against inactivation. 5. It is concluded that the substrate and Zn binding sites and the essential histidyl residues are in close proximity in the active center. It is proposed that in the catalytic synthesis of porphobilinogen from ALA, histidine groups have the specific role of transporting protons from the aqueous media to a hydrophobic active site.  相似文献   

11.
《Phytochemistry》1987,26(7):1859-1862
Modification of maize leaf NADP-malic enzyme by diethylpyrocarbonate (DEP) caused rapid and complete inactivation of the enzyme. The inactivation followed pseudo-first-order reaction kinetics. The inactivation of the enzyme showed saturation kinetics with a half inactivation time, at saturating DEP, equal to 0.15 min and KDEP = 20 mM. The rate of inactivation was faster at 25° as compared to 0° (t0.5 0.75 min at 25° as against 5.6 min at 4° at 5 mM DEP). The enzyme was partially protected against DEP inactivation by NADP and complete protection was seen in the presence of NADP + Mg2+ + malate or its analogues, thereby indicating that DEP modifies the active site. The modified enzyme showed an increase in absorbance at 240 nm which was lost upon treatment with 0.25 M NH2OH and almost complete recovery of the enzyme activity was also observed. The results suggest that DEP modifies 3.0 residues per subunit and of these at least two residue per subunit can be modified without loss of activity in the presence of substrate. Modification of about one histidine residue is correlated with the loss of enzyme activity.  相似文献   

12.
Counting of integral numbers of cysteine residues of the reduced and denaturated form of cyclomaltodextrin glucanotransferase (CGTase) from Bacillus circulans var. alkalophilus (ATCC 21783) showed two cysteine residues per enzyme molecule. Titrations of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid) led to the same result. No free SH-group was detected in denatured form of CGTase, indicating that the two cysteine residues are linked by one disulfide bridge. Cyclizing activity of the GdmCl-denaturated and reduced enzyme was 13% of that of the native one. Incubation of CGTase with diethylpyrocarbonate (DEP) showed a pseudo-first-order inhibition with second-order rate constant of 3.2 M-1 s-1. Reaction with hydroxylamine and spectroscopic studies implied that inactivation of CGTase by DEP is due to modification of one histidine residue concomitantly with a 50% decrease in the cyclizing activity (t1/2 = 10.8 min). The inhibition was partially reversible. CGTase was protected against inactivation by alpha- and beta-cyclodextrins suggesting that the modified histidine residue is at or near the active site. Conversion of starch with DEP-modified enzyme resulted in a decreased formation of cyclodextrins while the relative amount of reducing sugars increased. Preliminary results on modification of CGTase with other reagents, e.g., Woodward's reagent K, 2,3-butanedione and carbodiimide are included.  相似文献   

13.
Dihydrodiol dehydrogenase from pig liver was inactivated by diethylpyrocarbonate (DEP) and by rose bengal-sensitized photooxidation. The DEP inactivation was reversed by hydroxylamine and the absorption spectrum of the inactivated enzyme indicated that both histidine and tyrosine residues were carbethoxylated. The rates of inactivation by DEP and by photooxidation were dependent on pH, showing the involvement of a group with a pKa of 6.4. The kinetics of inactivation and spectrophotometric quantification of the modified residues suggested that complete inactivation was caused by modification of one histidine residue per active site. The inactivation by the two modifications was partially prevented by either NADP(H) or the combination of NADP+ and substrate, and completely prevented in the presence of both NADP+ and a competitive inhibitor which binds to the enzyme-NADP+ binary complex. The DEP-modified enzyme caused the same blue shift and enhancement of NADPH fluorescence as did the native enzyme, suggesting that the modified histidine is not in the coenzyme-binding site of the enzyme. The results suggest the presence of essential histidine residues in the catalytic region of the active site of pig liver dihydrodiol dehydrogenase.  相似文献   

14.
Horseradish peroxidase (HRP), when incubated with diethylpyrocarbonate (DEPC), shows a time-dependent loss of iodide oxidation activity. The inactivation follows pseudo-first order kinetics with a second order rate constant of 0.43 min-1 M-1 at 30 degrees C and is reversed by neutralized hydroxylamine. The difference absorption spectrum of the modified versus native enzyme shows a peak at 244 nm, characteristic of N-carbethoxyhistidine, which is diminished by treatment with hydroxylamine. Correlation between the stoichiometry of histidine modification and the extent of inactivation indicates that out of 2 histidine residues modified, one is responsible for inactivation. A plot of the log of the reciprocal half-time of inactivation against log DEPC concentration further suggests that only 1 histidine is involved in catalysis. The rate of inactivation shows a pH dependence with an inflection point at 6.2, indicating histidine derivatization by DEPC. Inactivation due to modification of tyrosine, lysine, or cysteine has been excluded. CD studies reveal no significant change in the protein or heme conformation following DEPC modification. We suggest that a unique histidine residue is required for maximal catalytic activity of HRP for iodide oxidation.  相似文献   

15.
Vacuolar proton pumping pyrophosphatase (H+-PPase; EC 3.6.1.1) plays a pivotal role in electrogenic translocation of protons from cytosol to the vacuolar lumen at the expense of PPi hydrolysis. A histidine-specific modifier, diethylpyrocarbonate (DEPC), could substantially inhibit enzymic activity and H+-translocation of vacuolar H+-PPase in a concentration-dependent manner. Absorbance of vacuolar H+-PPase at 240 nm was increased upon incubation with DEPC, demonstrating that an N-carbethoxyhistidine moiety was probably formed. On the other hand, hydroxylamine, a reagent that can deacylate N-carbethoxyhistidine, could reverse the absorption change at 240 nm and partially restore PPi hydrolysis activity as well. The pK a of modified residues of the enzyme was determined to be 6.4, a value close to that of histidine. Thus, we speculate that inhibition of vacuolar H+-PPase by DEPC possibly could be attributed to the modification of histidyl residues on the enzyme. Furthermore, inhibition of vacuolar H+-PPase by DEPC follows pseudo-first-order rate kinetics. A reaction order of 0.85 was calculated from a double logarithmic plot of the apparent reaction constant against DEPC concentration, suggesting that the modification of one single histidine residue on the enzyme suffices to inhibit vacuolar H+-PPase. Inhibition of vacuolar H+-PPase by DEPC changes V max but not K m values. Moreover, DEPC inhibition of vacuolar H+-PPase could be substantially protected against by its physiological substrate, Mg2+-PPi. These results indicated that DEPC specifically competes with the substrate at the active site and the DEPC-labeled histidine residue might locate in or near the catalytic domain of the enzyme. Besides, pretreatment of the enzyme with N-ethylmaleimide decreased the degree of subsequent labeling of H+-PPase by DEPC. Taken together, we suggest that vacuolar H+-PPase likely contains a substrate-protectable histidine residue contributing to the inhibition of its activity by DEPC, and this histidine residue may located in a domain sensitive to the modification of Cys-629 by NEM.  相似文献   

16.
The shikimate pathway enzyme 3-dehydroquinase is very susceptible to inactivation by the group-specific reagent diethyl pyrocarbonate (DEP). Inactivation follows pseudo first-order kinetics and exhibits a second-order rate constant of 148.5 M-1 min-1. An equilibrium mixture of substrate and product substantially protects against inactivation by DEP, suggesting that residues within the active site are being modified. Complete inactivation of the enzyme correlates with the modification of 6 histidine residues/subunit as determined by difference spectroscopy at 240 nm. Enzymic activity can be restored by hydroxylamine treatment, which is also consistent with the modification occurring at histidine residues. Using the kinetic method of Tsou (Tsou, C.-L. (1962) Sci. Sin. 11, 1535-1558), it was shown that modification of a single histidine residue leads to inactivation. Ligand protection experiments also indicated that 1 histidine residue was protected from DEP modification. pH studies show that the pKa for this inactivation is 6.18, which is identical to the single pKa determined from the pH/log Vmax profile for the enzyme. A single active site peptide was identified by differential peptide mapping in the presence and absence of ligand. This peptide was found to comprise residues 141-158; of the 2 histidines in this peptide (His-143 and His-146), only one, His-143, is conserved among all type I dehydroquinases. We propose that His-143 is the active site histidine responsible for DEP-mediated inactivation of dehydroquinase and is a good candidate for the general base that has been postulated to participate in the mechanism of this enzyme.  相似文献   

17.
Chemical probing of histidine residues using specific modifiers, iodoacetic acid (IAA) and diethylpyrocarbonate (DEP) resulted in the inactivation of phytase (phy A). The kinetic theory of the substrate reaction during the modification of enzyme activity was applied to a study of the kinetics of the course of inactivation of phytase by IAA and DEP. The results suggested that histidine residues are involved in the active site of the enzyme. They also indicated that inactivation of the enzyme by IAA was via a complexing type inhibition, while the inhibition by DEP reaction involved a conformational change step before inactivation. The dissociation constant of the enzyme-inhibitor complex of IAA, the constant of the conformational change of DEP and the microscopic rate constants of two inhibitors were obtained.  相似文献   

18.
Acyl-CoA:cholesterol O-acyltransferase (EC 2.3.1.26) (ACAT) catalyzes the intracellular synthesis of cholesteryl esters from cholesterol and fatty acyl-CoA at neutral pH. Despite the probable pathophysiologic role of ACAT in vascular cholesteryl ester accumulation during atherogenesis, its mechanism of action and its regulation remain to be elucidated because the enzyme polypeptide has never been identified or purified. Present chemical modification results identify two distinct tissue types of ACAT, based on marked differences in reactivity of an active-site histidine residue toward diethyl pyrocarbonate (DEP) and acetic anhydride. The apparent Ki of the DEP-sensitive ACAT subtype, typified by aortic ACAT, was 40 microM, but the apparent Ki of the DEP-resistant ACAT subtype, typified by liver ACAT, was 1500 microM, indicating a 38-fold difference in sensitivity to DEP. Apparent Ki's of aortic and liver ACAT for inhibition by acetic anhydride were also discordant (less than 500 microM and greater than 5 mM, respectively). On the basis of the reversibility of inhibition by hydroxylamine, a neutral pKa for maximal modification, and acetic anhydride protection against DEP inactivation, DEP and acetic anhydride appear to modify a common histidine residue. Oleoyl-CoA provided partial protection against inactivation by DEP and acetic anhydride, suggesting that the modified histidine is at or near the active site of ACAT. Systematic investigation of ACAT activity from 14 different organs confirmed the existence of 2 subtypes of ACAT on the basis of their different reactivities toward DEP and acetic anhydride.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Modification of maize δ-aminolevulinic acid dehydratase (ALAD) by diethylpyrocarbonate (DEP) caused rapid and complete inactivation of the enzyme. The inactivation showed saturation kinetics with a half inactivation time at saturating DEP equal to 0.3 min and KDEP  0.3 mM. Substrate δ-aminolevulinic acid (ALA) and competitive inhibitor levulinic acid protected against inactivation, thereby indicating that DEP modifies the active site. The modified enzyme showed an increase in absorbance at 240 nm which was lost upon treatment with 0.8 M hydroxylamine. Most of the activity lost by DEP treatment could be restored after treatment with 0.8 M hydroxylamine. The results suggest that DEP modifies 7.4 residues/mole of the enzyme. These histidine residues are essential for catalysis by ALAD.  相似文献   

20.
Treatment of Leuconostoc mesenteroides B-512F dextransucrase with diethyl pyrocarbonate (DEP) at pH 6.0 and 25 degrees or photo-oxidation in the presence of Rose Bengal or Methylene Blue at pH 6.0 and 25 degrees, caused a rapid decrease of enzyme activity. Both types of inactivation followed pseudo-first-order kinetics. Enzyme partially inactivated by DEP could be completely reactivated by treatment with 100 mM hydroxylamine at pH 7 and 4 degrees. The presence of dextran partially protected the enzyme from inactivation. At pH 7 or below, DEP is relatively specific for the modification of histidine. DEP-modified enzyme showed an increased absorbance at 240 nm, indicating the presence of (ethoxyformyl)ated histidine residues. DEP modification of the sulfhydryl group of cysteine and of the phenolic group of tyrosine was ruled out by showing that native and DEP-modified enzyme had the same number of sulfhydryl and phenolic groups. DEP modification of the epsilon-amino group of lysine was ruled out by reaction at pH 6 and reactivation with hydroxylamine, which has no effect on DEP-modified epsilon-amino groups. The photo-oxidized enzyme showed a characteristic increase in absorbance at 250 nm, also indicating that histidine had been oxidized, and no decrease in the absorbance at 280 nm, indicating that tyrosine and tryptophan were not oxidized. A statistical, kinetic analysis of the data on inactivation by DEP showed that two histidine residues are essential for the enzyme activity. Previously, it was proposed that two nucleophiles at the active site attack bound sucrose, to give two covalent D-glucosyl-enzyme intermediates. We now propose that in addition, two imidazolium groups of histidine at the active site donate protons to the leaving, D-fructosyl moieties. The resulting imidazole groups then facilitate the formation of the alpha-(1----6)-glycosidic linkage by abstracting protons from the C-6-OH groups, and become reprotonated for the next series of reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号