首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Signaling via the Ras pathway involves sequential activation of Ras, Raf-1, mitogen-activated protein kinase kinase (MKK), and the extracellular signal-regulated (ERK) group of mitogen-activated protein (MAP) kinases. Expression from the c-Fos, atrial natriuretic factor (ANF), and myosin light chain-2 (MLC-2) promoters during phenylephrine-induced cardiac muscle cell hypertrophy requires activation of this pathway. Furthermore, constitutively active Ras or Raf-1 can mimic the action of phenylephrine in inducing expression from these promoters. In this study, we tested whether constitutively active MKK, the molecule immediately downstream of Raf, was sufficient to induce expression. Expression of constitutively active MKK induce ERK2 kinase activity and caused expression from the c-Fos promoter, but did not significantly activate expression of reporter genes under the control of either the ANF or MLC-2 promoters. Expression of CL100, a phosphatase that inactivates ERKs, prevented expression from all of the promoters. Taken together, these data suggest that ERK activation is required for expression from the Fos, ANF, and MLC-2 promoters but MKK and ERK activation is sufficient for expression only from the Fos promoter. Constitutively active MKK synergized with phenylephrine to increase expression from a c-Fos- or an AP1-driven reporter. However, active MKK inhibited phenylephrine- and Raf-1-induced expression from the ANF and MLC-2 promoters. A DNA sequence in the MLC-2 promoter that is a target for inhibition by active MKK, but not CL100, was mapped to a previously characterized DNA element (HF1) that is responsible for cardiac specificity. Thus, activation of cardiac gene expression during phenylephrine-induced hypertrophy requires ERK activation but constitutive activation by MKK can inhibit expression by targeting a DNA element that controls the cardiac specificity of gene expression.  相似文献   

2.
c-Jun N-terminal protein kinase (JNK) and p38, two distinct members of the mitogen-activated protein (MAP) kinase family, regulate gene expression in response to various extracellular stimuli, yet their physiological functions are not completely understood. In this report we show that JNK and p38 exerted opposing effects on the development of myocyte hypertrophy, which is an adaptive physiological process characterized by expression of embryonic genes and unique morphological changes. In rat neonatal ventricular myocytes, both JNK and p38 were stimulated by hypertrophic agonists like endothelin-1, phenylephrine, and leukemia inhibitory factor. Expression of MAP kinase kinase 6b (EE), a constitutive activator of p38, stimulated the expression of atrial natriuretic factor (ANF), which is a genetic marker of in vivo cardiac hypertrophy. Activation of p38 was required for ANF expression induced by the hypertrophic agonists. Furthermore, a specific p38 inhibitor, SB202190, significantly changed hypertrophic morphology induced by the agonists. Surprisingly, activation of JNK led to inhibition of ANF expression induced by MEK kinase 1 (MEKK1) and the hypertrophic agonists. MEKK1-induced ANF expression was also negatively regulated by expression of c-Jun. Our results demonstrate that p38 mediates, but JNK suppresses, the development of myocyte hypertrophy.  相似文献   

3.
4.
《The Journal of cell biology》1994,126(6):1565-1572
Shortly after birth, cardiac myocytes lose the ability to divide, and, in adult animals, heart muscle grows by a process of cellular hypertrophy where each individual cell gets larger. We have previously shown that activated Ras protein can induce markers of the hypertrophic phenotype, including atrial natriuretic factor (ANF) expression and organization of contractile proteins, and that Ras is at least partially required for the hypertrophic effect of phenylephrine. In the present study, we examine the requirement for the mitogen-activated protein kinases (MAP kinases) in the hypertrophic response induced by phenylephrine. We find that phenylephrine treatment results in the activation of the MAP kinases and that this activity is required for transactivation of the fos, ANF, and MLH promoters. However, inhibition of MAP kinases does not prevent phenylephrine-induced organization of actin. These results suggest that the signal transduction pathways leading to different hypertrophic responses diverge upstream of the MAP kinases but possibly downstream of Ras.  相似文献   

5.
Mitogen-activated protein kinase (MAPK) cascades are the major signaling systems transducing extracellular signals into intracellular responses, which mainly include the extracellular signal-regulated kinase (ERK) pathway, the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) pathway, and the p38 pathway. From dendritic cell cDNA library, we isolated a full-length cDNA encoding a potentially novel 898-residue kinase, which was designated DPK. The protein contained a potential kinase domain at the N-terminal exhibiting homology with MEKK1-, MEKK2-, MEKK3-, MEKK4-, MEKK5-, Tpl-2-, and p21-activated kinases (PAKs), but no GTPase-binding domain which is characteristic of PAKs. Northern blotting analysis showed that DPK was ubiquitously expressed in normal tissues, with abundant expression in kidney, skeletal muscle, heart, and liver. When overexpressed in transfected NIH3T3 cells, it could activate both the ERK1/ERK2 pathway and the SAPK pathway in a dose-dependent manner, but not affect the p38 pathway. These findings suggested that DPK might be a novel candidate MAPKKK.  相似文献   

6.
Adult skeletal muscle fibers can be categorized into fast and slow twitch subtypes based on specialized contractile and metabolic properties and on distinctive patterns of muscle gene expression. Muscle fiber-type characteristics are dependent on the frequency of motor nerve stimulation and are thought to be controlled by calcium-dependent signaling. The calcium, calmodulin-dependent protein phosphatase, calcineurin, stimulates slow fiber-specific gene promoters in cultured skeletal muscle cells, and the calcineurin inhibitor, cyclosporin A, inhibits slow fiber gene expression in vivo, suggesting a key role of calcineurin in activation of the slow muscle fiber phenotype. Calcineurin has also been shown to induce hypertrophy of cardiac muscle and to mediate the hypertrophic effects of insulin-like growth factor-1 on skeletal myocytes in vitro. To determine whether activated calcineurin was sufficient to induce slow fiber gene expression and hypertrophy in adult skeletal muscle in vivo, we created transgenic mice that expressed activated calcineurin under control of the muscle creatine kinase enhancer. These mice exhibited an increase in slow muscle fibers, but no evidence for skeletal muscle hypertrophy. These results demonstrate that calcineurin activation is sufficient to induce the slow fiber gene regulatory program in vivo and suggest that additional signals are required for skeletal muscle hypertrophy.  相似文献   

7.
8.
Mitogen-activated protein kinase (MAPK) pathways couple intrinsic and extrinsic signals to hypertrophic growth of cardiomyocytes. The MAPK kinase MEK5 activates the MAPK ERK5. To investigate the potential involvement of MEK5-ERK5 in cardiac hypertrophy, we expressed constitutively active and dominant-negative forms of MEK5 in cardiomyocytes in vitro. MEK5 induced a form of hypertrophy in which cardiomyocytes acquired an elongated morphology and sarcomeres were assembled in a serial manner. The cytokine leukemia inhibitory factor (LIF), which stimulates MEK5 activity, evoked a similar response. Moreover, a dominant-negative MEK5 mutant specifically blocked LIF-induced elongation of cardiomyocytes and reduced expression of fetal cardiac genes without blocking other aspects of LIF-induced hypertrophy. Consistent with the ability of MEK5 to induce serial assembly of sarcomeres in vitro, cardiac-specific expression of activated MEK5 in transgenic mice resulted in eccentric cardiac hypertrophy that progressed to dilated cardiomyopathy and sudden death. These findings reveal a specific role for MEK5-ERK5 in the induction of eccentric cardiac hypertrophy and in transduction of cytokine signals that regulate serial sarcomere assembly.  相似文献   

9.
10.
Transforming growth factor-beta (TGF-beta) has been associated with the onset of cardiac cell hypertrophy, but the mechanisms underlying this dissociation are not completely understood. By a previous study, we investigated the involvement of a MAP3K, ZAK, which in cultured H9c2 cardiac cells is a positive mediator of cell hypertrophy. Our results showed that expression of a dominant-negative form of ZAK inhibited the characteristic TGF-beta-induced features of cardiac hypertrophy, including increased cell size, elevated expression of atrial natriuretic factor (ANF), and increased organization of actin fibers. Furthermore, dominant-negative MKK7 effectively blocked both TGF-beta-and ZAK-induced ANF expression. In contrast, a JNK/SAPK specific inhibitor, sp600125, had little effect on TGF-beta- or ZAK-induced ANF expression. Our findings suggest that a ZAK mediates TGF-beta-induced cardiac hypertrophic growth via a novel TGF-beta signaling pathway that can be summarized as TGF-beta>ZAK>MKK7>ANF.  相似文献   

11.
MEKK1 binds raf-1 and the ERK2 cascade components   总被引:8,自引:0,他引:8  
Mitogen-activated protein (MAP) kinase cascades are involved in transmitting signals that are generated at the cell surface into the cytosol and nucleus and consist of three sequentially acting enzymes: a MAP kinase, an upstream MAP/extracellular signal-regulated protein kinase (ERK) kinase (MEK), and a MEK kinase (MEKK). Protein-protein interactions within these cascades provide a mechanism to control the localization and function of the proteins. MEKK1 is implicated in activation of the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and ERK1/2 MAP kinase pathways. We showed previously that MEKK1 binds directly to JNK/SAPK. In this study we demonstrate that endogenous MEKK1 binds to endogenous ERK2, MEK1, and another MEKK level kinase, Raf-1, suggesting that it can assemble all three proteins of the ERK2 MAP kinase module.  相似文献   

12.
Much effort has focused on characterizing the signal transduction cascades that are associated with cardiac hypertrophy. In spite of this, we still know little about the mechanisms that inhibit hypertrophic growth. We define a novel anti-hypertrophic signaling pathway regulated by muscle ring finger protein-1 (MURF1) that inhibits the agonist-stimulated PKC-mediated signaling response in neonatal rat ventricular myocytes. MURF1 interacts with receptor for activated protein kinase C (RACK1) and colocalizes with RACK1 after activation with phenylephrine or PMA. Coincident with this agonist-stimulated interaction, MURF1 blocks PKCepsilon translocation to focal adhesions, which is a critical event in the hypertrophic signaling cascade. MURF1 inhibits focal adhesion formation, and the activity of downstream effector ERK1/2 is also inhibited in the presence of MURF1. MURF1 inhibits phenylephrine-induced (but not IGF-1-induced) increases in cell size. These findings establish that MURF1 is a key regulator of the PKC-dependent hypertrophic response and can blunt cardiomyocyte hypertrophy, which may have important implications in the pathophysiology of clinical cardiac hypertrophy.  相似文献   

13.
The atrial natriuretic factor (ANF) gene is activated in cardiac myocytes by Ras and its effector Raf. However, MEK, the best-characterized Raf substrate, cannot efficiently activate ANF suggesting that Raf uses a MEK-independent pathway to activate ANF. By manipulating MEK and Raf activities so that they are equally effective at activating ERK, we now demonstrate that Raf activates at least two signaling pathways in cardiac myocytes that regulate the ANF promoter; the MEK-->ERK pathway inhibits ANF gene expression while a Raf-induced, MEK-independent pathway activates expression. This mechanism may provide increased ability to regulate ANF expression in response to hypertrophic stimuli.  相似文献   

14.
We have previously shown that interleukin 1 (IL-1)-receptor-generated ceramide induces growth arrest in smooth muscle pericytes by activating an upstream kinase in the stress-activated protein kinase (SAPK) cascade. We now report the mechanism by which ceramide activates the SAPK signaling pathway in human embryonic kidney cells (HEK-293). We demonstrate that ceramide activation of protein kinase C zeta (PKCzeta) mediates SAPK signal complex formation and subsequent growth suppression. Ceramide directly activates both immunoprecipitated and recombinant human PKCzeta in vitro. Additionally, ceramide activates SAPK activity, which is blocked with a dominant-negative mutant of PKCzeta. Co-immunoprecipitation studies reveal that ceramide induces the association of SAPK with PKCzeta, but not with PKCepsilon. In addition, ceramide treatment induces PKCzeta association with phosphorylated SEK and MEKK1, elements of the SAPK signaling complex. The biological role of ceramide to induce cell cycle arrest is mimicked by overexpression of a constitutively active PKCzeta. Together, these studies demonstrate that ceramide induces cell cycle arrest by enhancing the ability of PKCzeta to form a signaling complex with MEKK1, SEK, and SAPK.  相似文献   

15.
Small guanine nucleotide-binding proteins of the Ras and Rho (Rac, Cdc42, and Rho) families have been implicated in cardiac myocyte hypertrophy, and this may involve the extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and/or p38 mitogen-activated protein kinase (MAPK) cascades. In other systems, Rac and Cdc42 have been particularly implicated in the activation of JNKs and p38-MAPKs. We examined the activation of Rho family small G proteins and the regulation of MAPKs through Rac1 in cardiac myocytes. Endothelin 1 and phenylephrine (both hypertrophic agonists) induced rapid activation of endogenous Rac1, and endothelin 1 also promoted significant activation of RhoA. Toxin B (which inactivates Rho family proteins) attenuated the activation of JNKs by hyperosmotic shock or endothelin 1 but had no effect on p38-MAPK activation. Toxin B also inhibited the activation of the ERK cascade by these stimuli. In transfection experiments, dominant-negative N17Rac1 inhibited activation of ERK by endothelin 1, whereas activated V12Rac1 cooperated with c-Raf to activate ERK. Rac1 may stimulate the ERK cascade either by promoting the phosphorylation of c-Raf or by increasing MEK1 and/or -2 association with c-Raf to facilitate MEK1 and/or -2 activation. In cardiac myocytes, toxin B attenuated c-Raf(Ser-338) phosphorylation (50 to 70% inhibition), but this had no effect on c-Raf activity. However, toxin B decreased both the association of MEK1 and/or -2 with c-Raf and c-Raf-associated ERK-activating activity. V12Rac1 cooperated with c-Raf to increase expression of atrial natriuretic factor (ANF), whereas N17Rac1 inhibited endothelin 1-stimulated ANF expression, indicating that the synergy between Rac1 and c-Raf is potentially physiologically important. We conclude that activation of Rac1 by hypertrophic stimuli contributes to the hypertrophic response by modulating the ERK and/or possibly the JNK (but not the p38-MAPK) cascades.  相似文献   

16.
Atrial natriuretic factor (ANF) inhibits proliferation in non-myocardial cells and is thought to be anti-hypertrophic in cardiomyocytes. We investigated the possibility that the anti-hypertrophic actions of ANF involved the mitogen-activated protein kinase signal transduction cascade. Cultured neonatal rat ventricular myocytes treated for 48 h with the alpha(1)-adrenergic agonist phenylephrine (PE) had an 80% increase in cross-sectional area (CSA). ANF alone had no effect but inhibited PE-induced increases in CSA by approximately 50%. The mitogen-activated protein kinase/ERK kinase (MEK) inhibitor PD098059 minimally inhibited PE-induced increases in CSA, but it completely abolished ANF-induced inhibition of PE-induced increases. ANF-induced extracellular signal-regulated protein kinase (ERK) nuclear translocation was also eliminated by PD098059. ANF treatment caused MEK phosphorylation and activation but failed to activate any of the Raf isoforms. ANF induced a rapid increase in ERK phosphorylation and in vitro kinase activity. PE also increased ERK activity, and the combined effect of ANF and PE appeared to be additive. ANF-induced ERK phosphorylation was eliminated by PD098059. ANF induced minimal phosphorylation of JNK or p38, indicating that its effect on ERK was specific. ANF-induced activation of ERK was mimicked by cGMP analogs, suggesting that ANF-induced ERK activation involves the guanylyl cyclase activity of the ANF receptor. These data suggest that there is an important linkage between cGMP signaling and the mitogen-activated protein kinase cascade and that selective ANF activation of ERK is required for the anti-hypertrophic action of ANF. Thus, ANF expression might function as the natural defense of the heart against maladaptive hypertrophy through its ability to activate ERK.  相似文献   

17.
In the developing heart, the epicardium is a major source of progenitor cells that contribute to the formation of the coronary vessel system. These epicardial progenitors give rise to the different cellular components of the coronary vasculature by undergoing a number of morphological and physiological changes collectively known as epithelial to mesenchymal transformation (EMT). However, the specific signaling mechanisms that regulate epicardial EMT are yet to be delineated. In this study we investigated the role of TGFβ2 and hyaluronan (HA) during epicardial EMT and how signals from these two molecules are integrated during this important process. Here we show that TGFβ2 induces MEKK3 activation, which in turn promotes ERK1/2 and ERK5 phosphorylation. TGFβ2 also increases Has2 expression and subsequent HA production. Nevertheless, inhibition of MEKK3 kinase activity, silencing of ERK5 or pharmacological disruption of ERK1/2 activation significantly abrogates this response. Thus, TGFβ2 promotes Has2 expression and HA production through a MEKK3/ERK1/2/5-dependent cascade. Furthermore, TGFβ2 is able to induce epicardial cell invasion and differentiation but not proliferation. However, inhibition of MEKK3-dependent pathways, degradation of HA by hyaluronidases or blockade of CD44, significantly impairs the biological response to TGFβ2. Taken together, these findings demonstrate that TGFβ2 activation of MEKK3/ERK1/2/5 signaling modulates Has2 expression and HA production leading to the induction of EMT events. This is an important and novel mechanism showing how TGFβ2 and HA signals are integrated to regulate changes in epicardial cell behavior.  相似文献   

18.
Abstract

Mechanical loading of cardiac muscles causes rapid activation of a number of immediate-early (IE) genes and hypertrophy. However, little is known as to how muscle cells sense mechanical load and regulate gene expression. We examined roles of several putative mechanotransducers in stretch-induced hypertrophy of cardiac myocytes grown on a deformable silicone sheet. Using the patch-clamp technique, we found a single class of stretch-activated cation channels which was completely and reversibly blocked by gadolinium. The inhibition of this channel by gadolinium did not affect either stretch-induced expression of the IE genes or hypertrophy. Neither disruption of microtubules with colchicine nor that of actin microfilaments by cytochalasin D prevented the stretch-induced IE gene expression. Arresting contractile activity by tetrodotoxin did not affect the stretch-induced IE gene expression or hypertrophy. These results suggest that stretch-activated cation channels, microtubules, microfilaments, and contractile activity are not the mechanotransducers. Preliminary results suggest that cell stretch may cause a release of a growth factor(s), which in turn initiates a cascade of hypertrophic response of cardiac myocytes.  相似文献   

19.
The molecular mechanisms controlling -adrenergic receptor agonist (BA)-induced skeletal muscle hypertrophy are not well known. We presently report that BA exerts a distinct muscle- and muscle fiber type-specific hypertrophy. Moreover, we have shown that pharmacologically or genetically attenuating extracellular signal-regulated kinase (ERK) signaling in muscle fibers resulted in decreases (P < 0.05) in fast but not slow fiber type-specific reporter gene expressions in response to BA exposure in vitro and in vivo. Consistent with these data, forced expression of MAPK phosphatase 1, a nuclear protein that dephosphorylates ERK1/2, in fast-twitch skeletal muscle ablated (P < 0.05) the hypertrophic effects of BA feeding (clenbuterol, 20 parts per million in water) in vivo. Further analysis has shown that BA-induced phosphorylation and activation of ERK occurred to a greater (P < 0.05) extent in fast myofibers than in slow myofibers. Analysis of the basal level of ERK activity in slow and fast muscles revealed that ERK1/2 is activated to a greater extent in fast- than in slow-twitch muscles. These data indicate that ERK signaling is differentially involved in BA-induced hypertrophy in slow and fast skeletal muscles, suggesting that the increased abundance of phospho-ERK1/2 and ERK activity found in fast-twitch myofibers, compared with their slow-twitch counterparts, may account, at least in part, for the fiber type-specific hypertrophy induced by BA stimulation. These data suggest that fast myofibers are pivotal in the adaptation of muscle to environmental cues and that the mechanism underlying this change is partially mediated by the MAPK signaling cascade. muscle fiber type; mitogen-activated protein kinase signaling pathways; mechanism  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号