首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subjective nasal obstruction is common among users of continuous positive airway pressure (CPAP). The aim of this study was to measure the acute effect of CPAP on nasal resistance and nasal symptoms in awake normal subjects. Twenty-four healthy CPAP-naive adults [8 men, 16 women; mean age 30 yr (SD 14)] underwent a randomized controlled crossover study comparing nasal CPAP (8 cmH(2)O) for 6 h on one occasion and the control condition (nasal mask without CPAP) on the other. Nasal resistance measurements (posterior active rhinometry) before and after the test exposure were similar on both test days. Nasal resistance during CPAP exposure [2.04 cmH(2)O.l(-1).s (SD 0.72)] was significantly lower than that of the control [2.67 cmH(2)O.l(-1).s (SD 1.07)]: mean difference 0.66 cmH(2)O.l(-1).s, 95% confidence interval 0.19-1.13 cmH(2)O.l(-1).s. The gradient in pressure from CPAP mask to posterior naris during CPAP exposure varied from 1.6 to 2 cmH(2)O but was not significantly different between time points. Subjective nasal symptom scores and peak nasal inspiratory flow rates did not change significantly on either test day. We conclude that in awake CPAP-naive normal subjects, acute CPAP exposure is associated with a reduction in nasal resistance compared with the control condition, but it is not associated with an immediate post-CPAP change in subjective or objective nasal resistance.  相似文献   

2.

Objective

Nasal obstruction is a common problem in continuous positive airway pressure (CPAP) therapy for obstructive sleep apnea and limits treatment compliance. The purpose of this study is to model the effects of nasal obstruction on airflow parameters under CPAP using computational fluid dynamics (CFD), and to clarify quantitatively the relation between airflow velocity and pressure loss coefficient in subjects with and without nasal obstruction.

Methods

We conducted an observational cross-sectional study of 16 Japanese adult subjects, of whom 9 had nasal obstruction and 7 did not (control group). Three-dimensional reconstructed models of the nasal cavity and nasopharynx with a CPAP mask fitted to the nostrils were created from each subject’s CT scans. The digital models were meshed with tetrahedral cells and stereolithography formats were created. CPAP airflow simulations were conducted using CFD software. Airflow streamlines and velocity contours in the nasal cavities and nasopharynx were compared between groups. Simulation models were confirmed to agree with actual measurements of nasal flow rate and with pressure and flow rate in the CPAP machine.

Results

Under 10 cmH2O CPAP, average maximum airflow velocity during inspiration was 17.6 ± 5.6 m/s in the nasal obstruction group but only 11.8 ± 1.4 m/s in the control group. The average pressure drop in the nasopharynx relative to inlet static pressure was 2.44 ± 1.41 cmH2O in the nasal obstruction group but only 1.17 ± 0.29 cmH2O in the control group. The nasal obstruction and control groups were clearly separated by a velocity threshold of 13.5 m/s, and pressure loss coefficient threshold of approximately 10.0. In contrast, there was no significant difference in expiratory pressure in the nasopharynx between the groups.

Conclusion

This is the first CFD analysis of the effect of nasal obstruction on CPAP treatment. A strong correlation between the inspiratory pressure loss coefficient and maximum airflow velocity was found.  相似文献   

3.
Nasal continuous positive airway pressure (CPAP) is an effective therapy for sleep apnea. We treated 144 patients with nasal CPAP and observed them for periods of as long as 25 months. No pneumothoraces occurred in any patient. Compliance rates were between 65% (90/139) and 83% (90/108), depending on the patient population considered. Demographic factors unrelated to discontinuing using CPAP included age, sex, and the presence of a housemate. Better-educated patients were less able to tolerate the equipment. Dry throat and nose and sore eyes were the most common side effects, but only sore eyes related to the amount of pressure. Side effects were unrelated to the number of months on the treatment, and obesity was related to higher pressures. Our study provides optimistic intermediate-term follow-up observations of patients on nasal CPAP therapy for sleep apnea. Whether adverse consequences occur over longer periods of time remains to be seen.  相似文献   

4.
曲春霞 《蛇志》2017,(2):186-187
目的探讨小儿重症肺炎合并呼吸衰竭经鼻持续气道正压通气治疗效果。方法选取2014年6月~2016年9月我院收治的52例重症肺炎合并呼吸衰竭患儿作为研究对象,按随机数字表法分为观察组和对照组,每组26例。观察组患儿的治疗方案为经鼻持续气道正压通气治疗,对照组患儿的治疗方案为鼻导管吸氧治疗,观察两组患儿的临床治疗效果及并发症发生情况。结果观察组的治疗总有效率为92.31%,明显高于对照组的65.38%,两组比较差异有统计学意义(P0.05);观察组的并发症发生率为3.85%,明显低于对照组的26.92%,两组比较差异有统计学意义(P0.05)。结论经鼻持续气道正压通气治疗小儿重症肺炎合并呼吸衰竭的效果理想,对降低患儿并发症,改善预后具有积极意义。  相似文献   

5.
The influence of pulmonary inflation and positive airway pressure on nasal and pharyngeal resistance were studied in 10 normal subjects lying in an iron lung. Upper airway pressures were measured with two low-bias flow catheters while the subjects breathed by the nose through a Fleish no. 3 pneumotachograph into a spirometer. Resistances were calculated at isoflow rates in four different conditions: exclusive pulmonary inflation, achieved by applying a negative extra-thoracic pressure (NEP); expiratory positive airway pressure (EPAP), which was created by immersion of the expiratory line; continuous positive airway pressure (CPAP), realized by loading the bell of the spirometer; and CPAP without pulmonary inflation by simultaneously applying the same positive extrathoracic pressure (CPAP + PEP). Resistance measurements were obtained at 5- and 10-cmH2O pressure levels. Pharyngeal resistance (Rph) significantly decreased during each measurement; the decreases in nasal resistance were only significant with CPAP and CPAP + PEP; the deepest fall in Rph occurred with CPAP. It reached 70.8 +/- 5.5 and 54.8 +/- 6.5% (SE) of base-line values at 5 and 10 cmH2O, respectively. The changes in lung volume recorded with CPAP + PEP ranged from -180 to 120 ml at 5 cmH2O and from -240 to 120 ml at 10 cmH2O. Resistances tended to increase with CPAP + PEP compared with CPAP values, but these changes were not significant (Rph = 75.9 +/- 6.1 and 59.9 +/- 6.6% at 5 and 10 cmH2O of CPAP + PEP). We conclude that 1) the upper airway patency increases during pulmonary inflation, 2) the main effect of CPAP is related to pneumatic splinting, and 3) pulmonary inflation contributes little to the decrease in upper airways resistance observed with CPAP.  相似文献   

6.
Over five years 23 infants with evidence of respiratory insufficiency due to bronchiolitis were managed with continuous positive airway pressure (CPAP). This was applied through either a short nasal cannula (14 patients) or an endotracheal tube (nine patients). Clinical improvement was seen in all patients, and there were significant falls in mean respiratory and pulse rates and pressure of carbon dioxide (PCO2). Seven infants with PCO2 values exceeding 8.0 KPa (60.2 mm Hg) responded particularly well. CPAP is effective in bronchiolitis, and when applied by the nasal route it is relatively free from complications.  相似文献   

7.
The passive pharyngeal critical closing pressure (Pcrit) is measured using a series of pressure drops. However, pressure drops also lower end-expiratory lung volume (EELV), which independently affects Pcrit. We describe a technique to measure Pcrit at a constant EELV. Continuous positive airway pressure (CPAP)-treated obstructive sleep apnea (OSA) patients and controls were instrumented with an epiglottic catheter, magnetometers (to measure change in EELV), and nasal mask/pneumotachograph and slept supine on nasal CPAP. Pcrit was measured in standard fashion and using our novel "biphasic technique" in which expiratory pressure only was lowered for 1 min before the inspiratory pressure was dropped; this allowed EELV to decrease to the drop level before performing the pressure drop. Seven OSA and three controls were studied. The biphasic technique successfully lowered EELV before the inspiratory pressure drop. Pcrit was similar between the standard and biphasic techniques (-0.4 ± 2.6 vs. -0.6 ± 2.3 cmH(2)O, respectively, P = 0.84). Interestingly, we noted three different patterns of flow limitation: 1) classic Starling resistor type: flow fixed and independent of downstream pressure; 2) negative effort dependence within breaths: substantial decrease in flow, sometimes with complete collapse, as downstream pressure decreased; and 3) and negative effort dependence across breaths: progressive reductions in peak flow as respiratory effort on successive breaths increased. Overall, EELV changes do not influence standard passive Pcrit measurements if breaths 3-5 of pressure drops are used. These results also highlight the importance of inspiratory collapse in OSA pathogenesis. The cause of negative effort dependence within and across breaths is not known and requires further study.  相似文献   

8.
Obstructive sleep apnea (OSA) in infants has been shown to resolve frequently without a cortical arousal. It is unknown whether infants do not require arousal to terminate apneas or whether this is a consequence of the OSA. We studied the apnea and arousal patterns of eight infants with OSA before and after treatment with nasal continuous positive airway pressure (CPAP). These infants were age matched to eight untreated infants with OSA and eight normal infants. Polysomnographic studies were performed on each infant. We found that the majority of central and obstructive apneas were terminated without arousal in all OSA infants. After several weeks of nasal CPAP treatment, the proportion of apneas terminating with an arousal during rapid-eye-movement sleep increased in treated infants compared with untreated infants. Spontaneous arousals during rapid-eye-movement sleep were reduced in all OSA infants; however, during CPAP treatment, the spontaneous arousals increased to the normal control level. We conclude that OSA in infants possibly depresses the arousal response and treatment of these infants with nasal CPAP partially reverses this depression.  相似文献   

9.
Upper airway pressure-flow relationships in obstructive sleep apnea   总被引:3,自引:0,他引:3  
We examined the pressure-flow relationships in patients with obstructive sleep apnea utilizing the concepts of a Starling resistor. In six patients with obstructive sleep apnea, we applied incremental levels of positive pressure through a nasal mask during non-rapid-eye-movement sleep. A positive critical opening pressure (Pcrit) of 3.3 +/- 3.3 (SD) cmH2O was demonstrated. As nasal pressure was raised above Pcrit, inspiratory airflow increased in proportion to the level of positive pressure applied until apneas were abolished (P less than 0.01). However, at pressures greater than Pcrit, esophageal pressures either did not correlate or correlated inversely with inspiratory airflow provided that esophageal pressure was less than Pcrit. When pressure was applied to a full face mask, inspiratory airflow did not occur and Pcrit could not be obtained at pressures well above Pcrit demonstrated with the nasal mask. These results are consistent with the view that the upper airway functions as a Starling resistor with a collapsible segment in the oropharynx. These findings offer a unifying construct for the association of sleep apnea, periodic hypopnea, and snoring.  相似文献   

10.
To determine the effects of the sleep-induced increases in upper airway resistance on ventilatory output, we studied five subjects who were habitual snorers but otherwise normal while awake (AW) and during non-rapid-eye-movement (NREM) sleep under the following conditions: 1) stage 2, low-resistance sleep (LRS); 2) stage 3-4, high-resistance sleep (HRS) (snoring); 3) with continuous positive airway pressure (CPAP); 4) CPAP + end-tidal CO2 partial pressure (PETCO2) mode isocapnic to LRS; and 5) CPAP + PETCO2 isocapnic to HRS. We measured ventilatory output via pneumotachograph in the nasal mask, PETCO2, esophageal pressure, inspiratory and expiratory resistance (RL,I and RL,E). Changes in PETCO2 were confirmed with PCO2 measurements in arterialized venous blood in all conditions in one subject. During wakefulness, pulmonary resistance (RL) remained constant throughout inspiration, whereas in stage 2 and especially in stage 3-4 NREM sleep, RL rose markedly throughout inspiration. Expired minute ventilation (VE) decreased by 12% in HRS, and PETCO2 increased in LRS (3.3 Torr) and HRS (4.9 Torr). CPAP decreased RL,I to AW levels and increased end-expiratory lung volume 0.25-0.93 liter. Tidal volume (VT) and mean inspiratory flow rate (VT/TI) increased significantly with CPAP. Inspiratory time (TI) shortened, and PETCO2 decreased 3.6 Torr but remained 1.3 Torr above AW. During CPAP (RL,I equal to AW), with PETCO2 returned to the level of LRS, VT/TI and VE were 83 and 52% higher than during LRS alone. Also on CPAP, with PETCO2 made equal to HRS, VT, VT/TI, and VE were 67, 112, and 67% higher than during HRS alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
During a nine-month period 24 newborn infants were treated with continuous positive airway pressure (CPAP) or mechanical ventilation delivered through a facemask. The mask was held in place in a way that minimised trauma and distortion of the head. The median birth weight of the infants was 1096 g and their median gestational age 29 weeks.The usual reason for treatment was hyaline membrane disease or recurrent apnoea due to inadequate control of breathing. Twenty-one of the infants survived. The technique was simple to apply and complications were minimal. We suggest that it may have advantages over other methods of applying CPAP or mechanical ventilation to infants mildly affected by respiratory illnesses and that it should be useful in avoiding endotracheal intubation or reducing the length of time that infants with more serious illnesses are intubated.  相似文献   

12.
Repetitive hypoxia followed by persistently increased ventilatory motor output is referred to as long-term facilitation (LTF). LTF is activated during sleep after repetitive hypoxia in snorers. We hypothesized that LTF is activated in obstructive sleep apnea (OSA) patients. Eleven subjects with OSA (apnea/hypopnea index = 43.6 +/- 18.7/h) were included. Every subject had a baseline polysomnographic study on the appropriate continuous positive airway pressure (CPAP). CPAP was retitrated to eliminate apnea/hypopnea but to maintain inspiratory flow limitation (sham night). Each subject was studied on 2 separate nights. These two studies are separated by 1 mo of optimal nasal CPAP treatment for a minimum of 4-6 h/night. The device was capable of covert pressure monitoring. During night 1 (N1), study subjects used nasal CPAP at suboptimal pressure to have significant air flow limitation (>60% breaths) without apneas/hypopneas. After stable sleep was reached, we induced brief isocapnic hypoxia [inspired O(2) fraction (FI(O(2))) = 8%] (3 min) followed by 5 min of room air. This sequence was repeated 10 times. Measurements were obtained during control, hypoxia, and at 5, 20, and 40 min of recovery for ventilation, timing (n = 11), and supraglottic pressure (n = 6). Upper airway resistance (Rua) was calculated at peak inspiratory flow. During the recovery period, there was no change in minute ventilation (99 +/- 8% of control), despite decreased Rua to 58 +/- 24% of control (P < 0.05). There was a reduction in the ratio of inspiratory time to total time for a breath (duty cycle) (0.5 to 0.45, P < 0.05) but no effect on inspiratory time. During night 2 (N2), the protocol of N1 was repeated. N2 revealed no changes compared with N1 during the recovery period. In conclusion, 1) reduced Rua in the recovery period indicates LTF of upper airway dilators; 2) lack of hyperpnea in the recovery period suggests that thoracic pump muscles do not demonstrate LTF; 3) we speculate that LTF may temporarily stabilize respiration in OSA patients after repeated apneas/hypopneas; and 4) nasal CPAP did not alter the ability of OSA patients to elicit LTF at the thoracic pump muscle.  相似文献   

13.
Noninvasive positive-pressure ventilation is a type of mechanical ventilation that does not require an artificial airway. Studies published in the 1990s that evaluated the efficacy of this technique for the treatment of diseases as chronic obstructive pulmonary disease, congestive heart failure and acute respiratory failure have generalized its use in recent years. Important issues include the selection of the ventilation interface and the type of ventilator. Currently available interfaces include nasal, oronasal and facial masks, mouthpieces and helmets. Comparisons of the available interfaces have not shown one to be clearly superior. Both critical care ventilators and portable ventilators can be used for noninvasive positive-pressure ventilation; however, the choice of ventilator type depends on the patient''s condition and therapeutic requirements and on the expertise of the attending staff and the location of care. The best results (decreased need for intubation and decreased mortality) have been reported among patients with exacerbations of chronic obstructive pulmonary disease and cardiogenic pulmonary edema.Noninvasive positive-pressure ventilation is the delivery of mechanical ventilation to patients with respiratory failure without the requirement of an artificial airway. The key change that led to the recent increase in the use of this technique occurred in the early 1980s with the introduction of the nasal continuous positive airway pressure mask for the treatment of obstructive sleep apnea. Studies published in the 1990s that evaluated the efficacy of noninvasive positive-pressure ventilation for treatment of diseases such as chronic obstructive pulmonary disease, congestive heart failure and acute respiratory failure have generalized its use in recent years.1 In 1998, an international study on the use of mechanical ventilation found that 5% of patients admitted to intensive care units received noninvasive positive-pressure ventilation.2Noninvasive positive-pressure ventilation includes various techniques for augmenting alveolar ventilation without an endotracheal airway. The clinical application of noninvasive ventilation by use of continuous positive airway pressure alone is referred to as “mask CPAP,” and noninvasive ventilation by use of intermittent positive-pressure ventilation with or without continuous positive airway pressure is called noninvasive positive-pressure ventilation.  相似文献   

14.
A current hypothesis for obstructive sleep apnea states that 1) negative airway pressure during inspiration can collapse the pharyngeal airway, and 2) neural control of pharyngeal airway-dilating muscles is important in preventing this collapse. To test this hypothesis we performed nasal mask occlusions to increase negative pharyngeal airway pressures during inspiration in eight normal and five micrognathic infants. Both groups developed midinspiratory pharyngeal obstruction, but obstruction was more frequent in micrognathic infants and varied in some infants with sleep state. The airway usually reopened with the subsequent expiration. The occasional failure to reopen was presumably due to pharyngeal wall adhesion. If airway obstruction occurred in sequential breaths during multiple-breath nasal mask occlusions in normal infants, there was a breath-by-breath change in the airway pressure associated with airway closure (airway closing pressure); the airway closing pressure became progressively more negative. Micrognathic infants showed less ability to improve the airway closing pressure, but this ability increased with age. These findings suggest that nasal mask occlusion can test the competence of the neuromuscular mechanisms that maintain pharyngeal airway patency in infants. Micrognathic infants had spontaneous midinspiratory pharyngeal airway obstructions during snoring. Their episodes of obstructive apnea began with midinspiratory pharyngeal obstruction similar to that seen during snoring and nasal mask occlusions. These findings imply a similar pathophysiology for snoring, spontaneous airway obstruction, and obstruction during snoring.  相似文献   

15.
Expiratory muscle activity has been shown to occur in awake humans during lung inflation; however, whether this activity is dependent on consciousness is unclear. Therefore we measured abdominal muscle electromyograms (intramuscular electrodes) in 13 subjects studied in the supine position during wakefulness and non-rapid-eye-movement sleep. Lung inflation was produced by nasal continuous positive airway pressure (CPAP). CPAP at 10-15 cmH2O produced phasic expiratory activity in two subjects during wakefulness but produced no activity in any subject during sleep. During sleep, CPAP to 15 cmH2O increased lung volume by 1,260 +/- 215 (SE) ml, but there was no change in minute ventilation. The ventilatory threshold at which phasic abdominal muscle activity was first recorded during hypercapnia was 10.3 +/- 1.1 l/min while awake and 13.8 +/- 1 l/min while asleep (P less than 0.05). Higher lung volumes reduced the threshold for abdominal muscle recruitment during hypercapnia. We conclude that lung inflation alone over the range that we studied does not alter ventilation or produce recruitment of the abdominal muscles in sleeping humans. The internal oblique and transversus abdominis are activated at a lower ventilatory threshold during hypercapnia, and this activation is influenced by state and lung volume.  相似文献   

16.
Obstructive sleep apnea syndrome (OSAS) causes intermittent hypoxia and increases in sympathetic activity and contributes to cardiovascular disorders. Interleukin-6 (IL-6) is one of the important proinflammatory cytokines. We examined the levels of serum IL-6 concentrations in nine patients with severe OSAS at four different clock times during the 24 h before and after three months of continuous positive airway pressure (CPAP) therapy. Serum IL-6 levels were significantly reduced after CPAP therapy by 46% (6.2+/-1.0 vs. 3.3+/-0.4 pg/ml, p<0.005). No significant 24 h variation of serum IL-6 in severe OSAS patients was found before CPAP; however, a significant 24 h variation of serum IL-6 was found after CPAP. Intermittent hypoxia during sleep may contribute to systemic inflammation and result in an elevation of serum IL-6 in severe OSAS patients.  相似文献   

17.
Sleep and Biological Rhythms - As adherence to continuous positive airway pressure (CPAP) therapy is crucial in the successful management of obstructive sleep apnea (OSA), identification of the...  相似文献   

18.
Obstructive sleep apnea syndrome (OSAS) causes intermittent hypoxia and increases in sympathetic activity and contributes to cardiovascular disorders. Interleukin‐6 (IL‐6) is one of the important proinflammatory cytokines. We examined the levels of serum IL‐6 concentrations in nine patients with severe OSAS at four different clock times during the 24 h before and after three months of continuous positive airway pressure (CPAP) therapy. Serum IL‐6 levels were significantly reduced after CPAP therapy by 46% (6.2±1.0 vs. 3.3±0.4 pg/ml, p<0.005). No significant 24 h variation of serum IL‐6 in severe OSAS patients was found before CPAP; however, a significant 24 h variation of serum IL‐6 was found after CPAP. Intermittent hypoxia during sleep may contribute to systemic inflammation and result in an elevation of serum IL‐6 in severe OSAS patients.  相似文献   

19.

Objective

Obstructive sleep apnea (OSA) has been suggested to be associated with low levels of adiponectin. Continuous positive airway pressure (CPAP) is the gold standard treatment for OSA; however, previous studies assessing the effect of CPAP on adiponectin in patients with OSA yielded conflicting results. The present meta-analysis was performed to determine whether CPAP therapy could increase adiponectin levels.

Methods

Two reviewers independently searched PubMed, Cochrane library, Embase and Web of Science before February 2015. Information on characteristics of subjects, study design and pre- and post-CPAP treatment of serum adiponectin was extracted for analysis. Standardized mean difference (SMD) was used to analyze the summary estimates for CPAP therapy.

Results

Eleven studies involving 240 patients were included in this meta-analysis, including ten observational studies and one randomized controlled study. The meta-analysis showed that there was no change of adiponectin levels before and after CPAP treatment in OSA patients (SMD = 0.059, 95% confidence interval (CI) = −0.250 to 0.368, z = 0.37, p = 0.710). Subgroup analyses indicated that the results were not affected by age, baseline body mass index, severity of OSA, CPAP therapy duration, sample size and racial differences.

Conclusions

This meta-analysis suggested that CPAP therapy has no impact on adiponectin in OSA patients, without significant changes in body weight. Further large-scale, well-designed long-term interventional investigations are needed to clarify this issue.  相似文献   

20.
To study the effect of increases in lung volume on solute uptake, we measured clearance of 99mTc-diethylenetriaminepentaacetic acid (Tc-DTPA) at different lung volumes in 19 healthy humans. Seven subjects inhaled aerosol (1 micron activity median aerodynamic diam) at ambient pressure; clearance and functional residual capacity (FRC) were measured at ambient pressure (control) and at increased lung volume produced by positive pressure [12 cmH2O continuous positive airway pressure (CPAP)] or negative pressure (voluntary breathing). Six different subjects inhaled aerosol at ambient pressure; clearance and FRC were measured at ambient pressure and CPAP of 6, 12, and 18 cmH2O pressure. Six additional subjects inhaled aerosol at ambient pressure or at CPAP of 12 cmH2O; clearance and FRC were determined at CPAP of 12 cmH2O. According to the results, Tc-DTPA clearance from human lungs is accelerated exponentially by increases in lung volume, this effect occurs whether lung volume is increased by positive or negative pressure breathing, and the effect is the same whether lung volume is increased during or after aerosol administration. The effect of lung volume must be recognized when interpreting the results of this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号