首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reptiles in urban remnants are threatened with extinction by increased fire frequency, habitat fragmentation caused by urban development, and competition and predation from exotic species. Understanding how urban reptiles respond to and recover from such disturbances is key to their conservation. We monitored the recovery of an urban reptile community for five years following a summer wildfire at Kings Park in Perth, Western Australia, using pitfall trapping at five burnt and five unburnt sites. The reptile community recovered rapidly following the fire. Unburnt sites initially had higher species richness and total abundance, but burnt sites rapidly converged, recording a similar total abundance to unburnt areas within two years, and a similar richness within three years. The leaf-litter inhabiting skink Hemiergis quadrilineata was strongly associated with longer unburnt sites and may be responding to the loss of leaf litter following the fire. Six rarely-captured species were also strongly associated with unburnt areas and were rarely or never recorded at burnt sites, whereas two other rarely-captured species were associated with burnt sites. We also found that one lizard species, Ctenotus fallens, had a smaller average body length in burnt sites compared to unburnt sites for four out of the five years of monitoring. Our study indicates that fire management that homogenises large areas of habitat through frequent burning may threaten some species due to their preference for longer unburnt habitat. Careful management of fire may be needed to maximise habitat suitability within the urban landscape.  相似文献   

2.
Unburnt patches within burnt landscapes are expected to provide an important resource for fauna, potentially acting as a refuge from direct effects of fire and allowing animals to persist in burnt landscapes. Nevertheless, there is little information about the way refugia are used by fauna and how populations may be affected by them. Planned burns are often patchy, with unburnt areas generally associated with gully systems providing a good opportunity to study faunal use of refugia. We used a before–after control‐impact design associated with a planned burn in south eastern Australia to investigate how two small mammal species, the bush rat Rattus fuscipes and agile antechinus Antechinus agilis, used unburnt gully systems within a larger burnt area. We tested three alternative hypotheses relating to post‐fire abundance: (i) active refugia – abundance would increase in unburnt patches because of a post‐fire shift of individuals from burnt to unburnt areas; (ii) passive refugia – abundance in unburnt patches would remain similar to pre‐fire levels; and (iii) limited or no refugia – abundance would reduce in unburnt patches related to the change induced by fire in the wider landscape. We found the two species responded differently to the presence of unburnt refugia in the landscape. Relative to controls, fire had little effect on bush rat abundance in gullies, supporting hypothesis 2. In contrast, agile antechinus abundance increased in gullies immediately post‐fire consistent with a shift of individuals from burnt parts of the landscape, supporting hypothesis 1. Differences in site fidelity, habitat use and intraspecific competition between these species are suggested as likely factors influencing responses to refugia. The way unburnt patches function as faunal refugia and the subsequent influence they have on post‐fire population dynamics, will to some extent depend on the life history attributes of individual species.  相似文献   

3.
In the spring and summer of 2019–2020, the ‘Black Summer’ bushfires burned more than 97 000 km2 of predominantly Eucalyptus dominated forest habitat in eastern Australia. The Black Summer bushfires prompted great concern that many species had been imperilled by the fires. Here, we investigate the effects that fire severity had on the habitat and abundance of a cool climate lizard Eulamprus tympanum that was identified as a species of concern because 37% of its habitat was burnt in the Black Summer bushfires. We quantified habitat structure and the abundance of E. tympanum at sites which were unburnt, burnt at low severity and at high severity 10, 15 and 23 months after the fires. Our classification of fire severity based on scorch height and canopy status corresponded well with the Australian Government Google Earth Engine Burnt Area Map (AUS GEEBAM) fire severity layer. Ten months after the fires, sites burnt at high severity had less canopy cover, more bare ground and less fine fuel than sites burnt at low severity or unburnt sites. The abundance of E. tympanum varied with survey occasion and was greatest during the warmest sampling period and lowest during the coolest sampling period. The abundance of E. tympanum was consistently lower on sites burnt at high severity than sites burnt at low severity or unburnt sites. Our findings show that higher severity fires had a greater effect on E. tympanum than low severity fires. Our results suggest that E. tympanum were likely to have persisted in burnt sites, with populations in low severity and unburnt sites facilitating population recovery in areas burnt at high severity. Our results also suggest that wildfire impacts on E. tympanum populations will increase because the frequency and extent of severe fires are expected to increase due to climate change.  相似文献   

4.
Fire is an important part of many Australian ecosystems, and determining how it affects different vegetation communities and associated fauna is of particular interest to land managers. Here, we report on a study that used sites established during a 39‐year fire experiment in coastal heathland in southeastern Queensland to compare arthropod abundance and vegetation in 1.5–2.6 ha sites that were (i) long unburnt, (ii) burnt every 5 years and (iii) burnt every 3 years. We found that the abundance of ants was more than four times higher in the frequently burnt sites compared to long unburnt sits. Moreover, long unburnt sites had greater dominance of Xanthorrhoea johnsonii and Caustis recurvata, whereas burnt sites had greater cover of Lomandra filiformis, Leucopogon margarodes and Leucopogon leptospermoides. Our findings show that frequent fire can alter vegetation structure and composition, and this is matched by an increase in the relative dominance of ants in the arthropod community.  相似文献   

5.
The fire resilience of ground‐dwelling ant assemblages in grassland subjected to annual fire management was investigated. Study sites consisted of three burnt sites and three unburnt sites in grasslands on the Hiraodai Karst Plateau in Fukuoka Prefecture, Japan. Ground‐dwelling ants were sampled by Winkler extraction and collected at 10 days and 1, 2, 3 and 6 months post‐fire. In total 33 ant species belonging to 25 genera in six subfamilies were collected from the burnt and unburnt sites. Eight of the 29 ant species collected at burnt sites were restricted to burnt sites, while four of the 25 ant species collected at unburnt sites were restricted to unburnt sites. Non‐metric multidimensional scaling and analysis of similarities revealed that the ant assemblages in the burnt sites at 10 days and 1 month post‐fire were clearly separated from the assemblages observed at 2, 3 and 6 months post‐fire. The results suggested that the ground‐dwelling ant fauna in the study area were highly resilient to fire at 2 months post‐fire and that the annual fire regime did not have a marked effect on species richness.  相似文献   

6.
Fire in Mediterranean-type ecosystems produces catastrophic changes in plant-pollinator systems; the recovery of which has been studied by comparing an unburnt mature forest habitat with that of an adjacent recently burnt area (eight years post-fire). The composition, visitation profiles, and effectiveness of the taxonomically diverse pollinator assemblages found on a core nectar providing species ( Satureja thymbra : Lamiaceae) were examined in these two contrasting habitats. S. thymbra in the freshly burnt area had low nectar standing crop and relatively less diverse bee community than an unburnt area which had twice the nectar standing crop and a higher bee diversity and abundance. Both sites supported bee assemblages dominated by the non-native bumblebee Bombus terrestris . Spatio-temporal heterogeneity of nectar standing crops and microclimatic conditions were sufficient to explain the form and magnitude of the diurnal foraging profiles at each site in relation to species specific foraging and flight abilities. B. terrestris, Apis mellifera and native solitary bees were the three primary guilds visiting S. thymbra and varied in the efficiency with which they delivered conspecific pollen grains to receptive stigmas. A pollinator effectiveness index for these three guilds was calculated based on floral visitation rates and pollen delivery efficiency and reflected the actual levels of effectiveness of each guild within and across the two habitat types. There was no overall inter-community difference in pollination effectiveness as the bee assemblages in both habitats were sufficient to produce maximum fruit set in S. thymbra, though the relative contribution of each guild varied intra-communally. Pollen limitation was not found to occur in either habitat.  相似文献   

7.
Wildfire is a major driver of spatio‐temporal variation in terrestrial ecosystems. Large wildfires are predicted to occur more frequently due to climate change. The mechanisms by which post‐fire recovery proceeds are influenced by the abundance of survivors, and their distribution in relation to habitat variability and refugia. Thus, characterising early post‐fire demographic processes is critical to understanding the demographic and community‐level responses of ecosystems to fire. The Black Saturday fires of February 2009 burnt an area of approximately 3500 km2 in Victoria, Australia. We quantified the effects of this high severity forest fire on the habitat, abundance, sex ratio and body mass of two small mammal species, the agile antechinus Antechinus agilis and bush rat Rattus fuscipes. We developed a hypothetical framework to distinguish in situ survival and rapid recolonisation as the processes underlying short‐term post‐fire distributions. These hypotheses were based on expected patterns of abundance over increasing distances from unburnt sources, and the estimated recolonisation capabilities of each species and sex. The agile antechinus and bush rat were present in burnt sites at 30% and 12% of the density observed in unburnt sites. In situ survival, and not recolonisation, was the most plausible explanation for our findings. Abundance and body mass data indicated a greater effect of fire on the bush rat than the agile antechinus. The bush rat showed a shift in topographic association, whereby drainage lines acted as post‐fire refugia. Our findings suggest these species do not depend on recolonisation for recovery, and that the bush rat will follow a nucleated recovery, expanding from topographic refugia. Thus, connectivity‐reducing management activities, such as salvage logging and firebreak and road construction, may not affect the early stages of population recovery in remaining stands of burnt forest. Rather, ongoing recovery is likely to be limited by demographic rates and resource availability.  相似文献   

8.
We investigated demographic responses of the common brushtail possum Trichosurus vulpecula, a medium-sized arboreal marsupial, after a prescribed fuel reduction burn on Magnetic Island, tropical north Queensland, Australia. Possums were live-trapped every month for 14 months before the fire and 11 months after the fire in both the burnt and unburnt areas; measurements of individuals were taken each month and demographic parameters were modelled using capture–mark–recapture data. Significant differences between the burnt and unburnt sites were found following the fire; recruitment was lower in the unburnt area, where population size also declined. In the burnt area, population size and recruitment displayed a tendency to increase after the fire, while capture probability declined, suggesting that an influx of new individuals, attracted to re-sprouting vegetation, had resulted in trap saturation. There was no detectable effect of the fire on survival, and no fire-induced mortalities were observed. We conclude that a low-intensity, prescribed, fuel-reduction burn had no obvious negative consequences for this possum population.  相似文献   

9.
Native bee abundance has long been assumed to be limited by floral resources. This paradigm has been established in large measure because more bees are often found in areas supporting greater floral abundance. This could result from attraction to resource-rich sites as well as greater local demographic performance in sites supporting high floral abundance; however, demographic performance is usually unknown. Factors other than floral resources such as availability of nest sites, pressure from natural enemies, or whether floral resources are from a mixed native or mostly monodominant exotic assemblage might influence survival or fecundity and hence abundance. We examined how the survival and fecundity of the native solitary bee Osmia lignaria varied along a gradient in floral resource abundance. We released bees alongside a nest block at 27 grassland sites in Montana (USA) that varied in floral abundance and the extent of invasion by exotic forbs. We monitored nest construction and the fate of offspring within each nest. The number of nests established was positively related to native forb abundance and was negatively related to exotic forb species richness. Fecundity was positively related to native forb species richness; however, offspring mortality caused by the brood parasite Tricrania stansburyi was significantly greater in native-dominated sites. These results suggest that native floral resources can positively influence bee populations, but that the relationship between native floral resources and bee population performance is not straightforward. Rather, bees may face a trade-off between high offspring production and low offspring survival in native-dominated sites.  相似文献   

10.
Fire frequency is a key land management issue, particularly in tropical savannas where fire is widely used and fire recurrence times are often short. We used an extended Before‐After‐Control‐Impact design to examine the impacts of repeated wet‐season burning for weed control on bird assemblages in a tropical savanna in north Queensland, Australia. Experimentally replicated fire treatments (unburnt, singularly bunt, twice burnt), in two habitats (riparian and adjacent open woodland), were surveyed over 3 years (1 year before the second burn, 1 year post the second burn, 2 years post the second burn) to examine responses of birds to a rapid recurrence of fire. Following the second burn, species richness and overall bird abundance were lower in the twice‐burnt sites than either the unburnt or singularly burnt sites. Feeding group composition varied across year of survey, but within each year, feeding guilds grouped according to fire treatment. In particular, abundance of frugivores and insectivores was lower in twice‐burnt sites, probably because of the decline of a native shrub that produces fleshy fruits, Carissa ovata. Although broader climatic variability may ultimately determine overall bird assemblages, our results show that a short fire‐return interval will substantially influence bird responses at a local scale. Considering that fire is frequently used as a land management tool, our results emphasize the importance of determining appropriate fire‐free intervals.  相似文献   

11.
Ecosystems managed with contrasting fire regimes provide insight into the responses of vegetation and soil. Heathland, woodland and forest ecosystems along a gradient of resource availability were burnt over four decades in approximately 3- or 5-year intervals or were unburnt for 45–47 years (heathland, woodland), or experienced infrequent wildfires (forest: 14 years since the last fire). We hypothesized that, relative to unburnt or infrequent fires, frequent burning would favour herbaceous species over woody species and resprouting over obligate seeder species, and reduce understorey vegetation height, and topsoil carbon and nitrogen content. Our hypothesis was partially supported in that herbaceous plant density was higher in frequently burnt vegetation; however, woody plant density was also higher in frequently burnt areas relative to unburnt/infrequently burnt areas, across all ecosystems. In heathland, omission of frequent fire resulted in the dominance of fern Gleichenia dicarpa and subsequent competitive exclusion of understorey species and lower species diversity. As hypothesized, frequent burning in woodland and forest increased the density of facultative resprouters and significantly reduced soil organic carbon levels relative to unburnt sites. Our findings confirm that regular burning conserves understorey diversity and maintains an understorey of lower statured herbaceous plants, although demonstrates the potential trade-off of frequent burning with lower topsoil carbon levels in the woodland and forest. Some ecosystem specific responses to varied fire frequencies were observed, reflecting differences in species composition and fire response traits between ecosystems. Overall, unburnt vegetation resulted in the dominance of some species over others and the different vegetation types were able to withstand relatively high-frequency fire without the loss of biodiversity, mainly due to high environmental productivity and short juvenile periods.  相似文献   

12.
Aim To describe the nexus between Aboriginal landscape burning and patterns of habitat use by kangaroos in a tropical savanna habitat mosaic, and to provide evidence to evaluate the claim that Aboriginal landscape burning is a game management tool. Location Central Arnhem Land, a stronghold of traditional Aboriginal culture, in the monsoon tropics of northern Australia. Methods The abundance of kangaroo scats was recorded throughout a landscape burnt by Aboriginal people, and used as a proxy for the intensity of habitat use by kangaroos. Scat abundance was assessed along field traverses totalling 112 km, at three time periods: (1) 1–4 weeks following mid‐dry season burning (July 2003); (2) in the late dry season (November 2003); and (3) in the following mid‐dry season (July 2004). We compared the intensity with which kangaroos used burnt vs. unburnt areas in various habitat types, with time since mid‐dry season burning. Scats were collected from areas that had been burnt to a varying extent and the abundance of carbon and nitrogen stable isotopes (δ13C and δ15N) and carbon to nitrogen ratios (C : N) determined. Results There was clear evidence of an interaction between burning and habitat type on the abundance of kangaroo scats. Scats were much more abundant in burnt vs. unburnt areas in the moist habitats, but the opposite effect was observed in the dry rocky habitats, with higher scat abundance in unburnt areas. This interactive effect of burning and habitat type on scat abundance was observed immediately (< 4 weeks) following fire, and was still present one year later. High concentrations of nitrogen in resprouting grasses indicate that burnt areas may provide kangaroos with greater access to nutrients. The isotopic composition of scats indicates that kangaroos feeding in extensively burnt areas were consuming more grasses, and possibly sedges, than kangaroos feeding in unburnt areas. Main conclusions The fine‐scale mosaic of burnt and unburnt areas created by mid‐dry season Aboriginal landscape burning has clear effects on the distribution of kangaroos. Kangaroos move into burnt moist habitats and away from burnt dry, rocky habitats. Isotopic analysis of scats suggests that the mechanism driving this effect is the increased abundance of nitrogen rich grasses in burnt moist habitats.  相似文献   

13.
Mortality of cacti after grassland fires is usually <25% within 2 years. Little, however, is known about long-term mortality. This study followed the fate of 50 marked plants of each of four species of small cacti (Coryphantha vivipara, Echinocereus pectinatus, Echinomastus intertextus and Mammillaria heyderi) on burnt and unburnt desert-grassland in Arizona. All marked plants were dead within 16 years. The first three species suffered increased mortality after being burnt while M. gummifera survived better after fire. The average rate of mortality of burnt plants over unburnt plants was 10.2 times higher in E. pectinatus, 3.7 times in C. vivipara and 1.5 times in E. intertextus. In M. heyderi, however, the mortality of burnt plants was 0.25 that of control plants. Fire more rapidly removed the breeding populations of the first three species, reducing seed availability in the occasional years favourable for establishment, increasing the risk of local extinction. Cacti did establish on the study areas and by the end were of a similar size to the dead cohort giving the superficial impression that the site was unchanged except for a reduction on unburnt sites in total cactus density (burnt: 445/ha in 1987, 401/ha in 2003; control: 2235/ha and 675/ha, respectively). Evidence of fire and dead plants rapidly disappeared, so without plants being marked the death of one population and establishment of another would have been easily missed. Estimates of growth rates support the assertion that the final plants established during the study.  相似文献   

14.

Human-induced wildfires are increasing in frequency in tropical forests, and their deleterious consequences for biodiversity include decreases in seed rain, which may be affected directly by fire or indirectly by the creation of edges between forest and non-forest environments. Understanding seed rain is key to assess the potential for natural regeneration in plant communities. We assessed the impact of fire and fire-created edges on seed rain species richness, abundance, size, weight, and dispersal syndromes in Atlantic Forest remnants in Bahia, Brazil. We assessed seed rain at monthly intervals for an entire year along seven 300 m-long transects placed perpendicular to the edge. We installed seed traps at the edge and at 20, 40, 60, 80, 100, and 150 m into the burnt area and into the forest from forest edge. We recorded a total of 9050 seeds belonging to 250 morphospecies. We did not observe edge influence; however, we detected a lower abundance and proportion of animal-dispersed seeds in the burnt than in the unburnt areas. The seed abundance in the burnt areas was lower and seeds were smaller and lighter than those in the unburnt area. Seed rain in the burnt area was not greater near to the forest than far from it. The abundance and richness of seed rain was positively correlated with tree density. Our findings highlight the lack of seed rain in burnt areas and differences in community composition between the burnt and unburnt areas. Collectively, these results indicate negative consequences on natural regeneration, which can lead to permanent secondarization of the vegetation and challenges for early regeneration of burnt areas, which will initially have impoverished forests due to low seed richness.

  相似文献   

15.
Abstract. The effect of fire on annual plants was examined in two vegetation types at remnant vegetation edges in the Western Australian wheatbelt. Density and cover of non-native species were consistently greatest at the reserve edges, decreasing rapidly with increasing distance from reserve edge. Numbers of native species showed little effect of distance from reserve edge. Fire had no apparent effect on abundance of non-natives in Allocasuarina shrubland but abundance of native plants increased. Density of both non-native and native plants in Acacia acuminata-Eucalyptus loxophleba woodland decreased after fire. Fewer non-native species were found in the shrubland than in the woodland in both unburnt and burnt areas, this difference being smallest between burnt areas. Levels of soil phosphorus and nitrate were higher in burnt areas of both communities and ammonium also increased in the shrubland. Levels of soil phosphorus and nitrate were higher at the reserve edge in the unburnt shrubland, but not in the woodland. There was a strong correlation between soil phosphorus levels and abundance of non-native species in the unburnt shrubland, but not after fire or in the woodland. Removal of non-native plants in the burnt shrubland had a strong positive effect on total abundance of native plants, apparently due to increases in growth of smaller, suppressed native plants in response to decreased competition. Two native species showed increased seed production in plots where non-native plants had been removed. There was a general indication that, in the short term, fire does not necessarily increase invasion of these communities by non-native species and could, therefore be a useful management tool in remnant vegetation, providing other disturbances are minimised.  相似文献   

16.
Foraging affects survival and reproductive success in animals, including flower-visiting insects. Plant-derived floral food resources (i.e. nectar and pollen) may be rapidly changing in space and time and pollinators may need to quickly switch to new resources. Butterflies are suitable model organisms to investigate foraging behaviour of insect pollinators, because they can be easily monitored under natural conditions. We studied flower visitation patterns in the Clouded Apollo butterfly Parnassius mnemosyne in relation to the abundance of available floral resources. We recorded flower visitation daily in individually marked butterflies, listed flowering species and estimated flower abundance categories every 3 days in a single meadow, during five consecutive flight periods. Butterflies visited 35 nectar plants from the 71 species available. Few nectar plants were frequently visited (visit ratios for the annually most visited species: 37–60%), many were scarcely visited and no visits were observed on several abundant species. Flower abundance and visit ratio varied among years and within flight periods. The number of visits increased with flower abundance in the seven most frequently visited plant species, but not in the occasionally visited ones. Beside their choosiness, Parnassius mnemosyne butterflies were able to adjust foraging behaviour to rapidly changing resource distributions. Diet selectivity in adults might increase the vulnerability of this species. However, visitation plasticity may mitigate the effect of the lack of some nectar plants, as complementary resources can be used as alternatives.  相似文献   

17.
Woody tree species in seasonally dry tropical forests are known to have traits that help them to recover from recurring disturbances such as fire. Two such traits are resprouting and rapid post‐fire growth. We compared survival and growth rates of regenerating small‐sized individuals (juveniles) of woody tree species after dry season fire (February–March) at eight adjacent pairs of burnt and unburnt transects in a seasonally dry tropical forest in southern India. Juveniles were monitored at 3‐mo intervals between August 2009 and August 2010. High juvenile survivorship (>95%) was observed in both burnt and unburnt areas. Growth rates of juveniles, analyzed at the community level as well as for a few species individually (especially fast‐growing ones), were distinctly higher in burnt areas compared to unburnt areas after a fire event, particularly during the pre‐monsoon season immediately after a fire. Rapid growth by juveniles soon after a fire may be due to lowered competition from other vegetative forms such as grasses, possibly aided by the availability of resources stored belowground. Such an adaptation would allow a juvenile bank to be retained in the understory of a dry forest, from where individuals can grow to a possible fire‐tolerant size during favorable conditions.  相似文献   

18.
Agricultural intensification is a major driver of wild bee decline. Vineyards may be inhabited by plant and animal species, especially when the inter‐row space is vegetated with spontaneous vegetation or cover crops. Wild bees depend on floral resources and suitable nesting sites which may be found in vineyard inter‐rows or in viticultural landscapes. Inter‐row vegetation is managed by mulching, tillage, and/or herbicide application and results in habitat degradation when applied intensively. Here, we hypothesize that lower vegetation management intensities, higher floral resources, and landscape diversity affect wild bee diversity and abundance dependent on their functional traits. We sampled wild bees semi‐quantitatively in 63 vineyards representing different vegetation management intensities across Europe in 2016. A proxy for floral resource availability was based on visual flower cover estimations. Management intensity was assessed by vegetation cover (%) twice a year per vineyard. The Shannon Landscape Diversity Index was used as a proxy for landscape diversity within a 750 m radius around each vineyard center point. Wild bee communities were clustered by country. At the country level, between 20 and 64 wild bee species were identified. Increased floral resource availability and extensive vegetation management both affected wild bee diversity and abundance in vineyards strongly positively. Increased landscape diversity had a small positive effect on wild bee diversity but compensated for the negative effect of low floral resource availability by increasing eusocial bee abundance. We conclude that wild bee diversity and abundance in vineyards is efficiently promoted by increasing floral resources and reducing vegetation management frequency. High landscape diversity further compensates for low floral resources in vineyards and increases pollinating insect abundance in viticulture landscapes.  相似文献   

19.
Abstract This opportunistic study compares the vegetation, fuel loads and vertebrate fauna of part of a 120‐ha block of tropical open forest protected from fire for 23 years, and an adjacent block burnt annually over this period. Total fuel loads did not differ significantly between the unburnt and annually burnt sites, but their composition was markedly different, with far less grassy fuel, but far more litter fuel, in the unburnt block. There were major differences between treatments in the composition of trees and shrubs, manifest particularly in the number of stems. There was no overall difference in plant species richness between the two treatments, but richness of woody species was far higher in the unburnt treatment, and of annual and perennial grasses, and perennial herbs in the annually burnt treatment. Change in plant species composition from annually burnt to unburnt treatment was directional, in that there was a far higher representation of rainforest‐associated species (with the percentage of woody stems attributable to ‘rainforest’ species increasing from 24% of all species in the annually burnt treatment to 43% in the unburnt treatment, that of basal area from 9% to 30%, that of species richness from 8% to 17%, and that of cover from 12 to 47%). The vertebrate species composition varied significantly between treatments, but there was relatively little difference in species richness (other than for a slightly richer reptile fauna in the unburnt treatment). Again, there was a tendency for species that were more common in the unburnt treatment to be rainforest‐associated species. The results from this study suggest that there is a sizeable and distinct set of species that are associated with relatively long‐unburnt environments, and hence that are strongly disadvantaged under contemporary fire regimes. We suggest that such species need to be better accommodated by fire management through strategic reductions in the frequency of burning.  相似文献   

20.
The contribution of wild insects to crop pollination is becoming increasingly important as global demand for crops dependent on animal pollination increases. If wild insect populations are to persist in agricultural landscapes, there must be sufficient resources over time and space. The temporal, within‐season component of floral resource availability has rarely been investigated, despite growing recognition of its likely importance for pollinator populations. Here, we examined the visitation rates of common bee genera and the spatiotemporal availability of floral resources in agroecosystems over one season to determine whether local wild bee activity was limited by landscape floral resource abundance, and if so, whether it was limited by the present or past abundance of landscape floral resources. Visitation rates and landscape floral resources were measured in 27 agricultural sites in Ontario and Québec, Canada, across four time periods and three spatial scales. Floral resources were determined based on species‐specific floral volume measurements, which we found to be highly correlated with published measurements of nectar sugar mass and pollen volume. Total floral volume at varying spatial scales predicted visits for commonly observed bee genera. We found Lasioglossum and Halictus visits were highest in landscapes that provided either a stable or increasing amount of floral resources over the season. Andrena visits were highest in landscapes with high floral resources at the start of the season, and Bombus visits appeared to be positively related to greater cumulative seasonal abundance of floral resources. These findings together suggest the importance of early‐season floral resources to bees. Megachile visits were negatively associated with the present abundance of floral resources, perhaps reflecting pollinator movement or dilution. Our research provides insight into how seasonal fluctuations in floral resources affect bee activity and how life history traits of bee genera influence their responses to food availability within agroecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号