共查询到20条相似文献,搜索用时 0 毫秒
1.
MiR-130a 在猪皮下脂肪细胞分化中的调节作用 总被引:1,自引:0,他引:1
为研究miR-130a对猪皮下脂肪细胞分化的影响及可能机制,本试验分离猪皮下脂肪前体细胞,诱导分化为成熟脂肪细胞,检测脂肪细胞分化过程中脂滴变化及miR-130a及其可能靶基因TNF α和PPARγ的表达模式.同时合成miR-130a mimics及inhibitor 对细胞进行转染,并以乱序序列作为阴性对照(NC).细胞转染24 h后进行诱导分化,连续诱导8 d,检测各处理细胞的聚脂情况及甘油三酯含量变化,荧光定量PCR检测脂肪细胞分化相关基因的表达变化.结果显示,猪皮下脂肪前体细胞分化过程中脂滴逐渐变大增多,miR-130a、TNF α和PPARγ的表达模式具有一定的相似性.转染结果显示,相对于对照组,miR 130a mimics转染组细胞脂滴减少变小,甘油三酯含量降低(P<0.05),脂肪细胞分化相关基因LPL、PPARγ、adiponectin、FASN和葡萄糖转运相关基因GLUT1,GLUT4以及JNK通路上的PDE3B的表达均比对照组显著下调(P<0.01);而miR-130a inhibitor转染组细胞则脂滴增多,甘油三酯含量提高(P<0.05),但大部分分化相关基因的表达与对照组无显著差异,提示miR-130a可能不只通过单一的靶基因影响脂肪细胞分化.其结果为后续深入研究miR-130a调节猪脂肪细胞分化的通路及机制奠定基础. 相似文献
2.
Synaptic remodeling has been postulated as a mechanism underlying synaptic plasticity and cell adhesion molecules are thought to contribute to this process. We examined the role of nectin-1 ectodomain shedding on synaptogenesis in cultured rat hippocampal neurons. Nectins are Ca(2+) -independent immunoglobulin-like adhesion molecules, involved in cell-cell adherens junctions. Herein, we show that the processing of nectin-1 occurs by multiple endoproteolytic steps both in vivo and in vitro. We identified regions containing two distinct cleavage sites within the ectodomain of nectin-1. By alanine scanning mutagenesis, two point mutations that disrupt nectin-1 ectodomain cleavage events were identified. Expression of these mutants significantly alters the density of dendritic spines. These findings suggest that ectodomain shedding of nectin-1 regulates dendritic spine density and related synaptic functions. 相似文献
3.
Min Jung Kim Susan L. Cotman Willi Halfter Gregory J. Cole 《Developmental neurobiology》2003,55(3):261-277
Although the role of agrin in the formation of the neuromuscular junction is well established, other functions for agrin have remained elusive. The present study was undertaken to assess the role of agrin in neurite outgrowth mediated by the heparin‐binding growth factor basic fibroblast growth factor (FGF‐2), which we have shown previously to bind to agrin with high affinity and that has been shown to mediate neurite outgrowth from a number of neuronal cell types. Using both an established neuronal cell line, PC12 cells, and primary chick retina neuronal cultures, we find that agrin potentiates the ability of FGF‐2 to stimulate neurite outgrowth. In PC12 cells and retinal neurons agrin increases the efficacy of FGF‐2 stimulation of neurite outgrowth mediated by the FGF receptor, as an inhibitor of the FGF receptor abolished neurite outgrowth in the presence of agrin and FGF‐2. We also examined possible mechanisms by which agrin may modulate neurite outgrowth, analyzing ERK phosphorylation and c‐fos phosphorylation. These studies indicate that agrin augments a transient early phosphorylation of ERK in the presence of FGF‐2, and augments and sustains FGF‐2 mediated increases in c‐fos phosphorylation. These data are consistent with established mechanisms where heparan sulfate proteoglycans such as agrin may increase the affinity between FGF‐2 and the FGF receptor. In summary, our studies suggest that neural agrin contributes to the establishment of axon pathways by modulating the function of neurite promoting molecules such as FGF‐2. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 261–277, 2003 相似文献
4.
Enni Bertling Peter Blaesse Patricia Seja Elena Kremneva Gergana Gateva Mari A Virtanen Milla Summanen Inkeri Spoljaric Pavel Uvarov Michael Blaesse Ville O Paavilainen Laszlo Vutskits Kai Kaila Pirta Hotulainen Eva Ruusuvuori 《EMBO reports》2021,22(4)
Intracellular pH is a potent modulator of neuronal functions. By catalyzing (de)hydration of CO2, intracellular carbonic anhydrase (CAi) isoforms CA2 and CA7 contribute to neuronal pH buffering and dynamics. The presence of two highly active isoforms in neurons suggests that they may serve isozyme‐specific functions unrelated to CO2‐(de)hydration. Here, we show that CA7, unlike CA2, binds to filamentous actin, and its overexpression induces formation of thick actin bundles and membrane protrusions in fibroblasts. In CA7‐overexpressing neurons, CA7 is enriched in dendritic spines, which leads to aberrant spine morphology. We identified amino acids unique to CA7 that are required for direct actin interactions, promoting actin filament bundling and spine targeting. Disruption of CA7 expression in neocortical neurons leads to higher spine density due to increased proportion of small spines. Thus, our work demonstrates highly distinct subcellular expression patterns of CA7 and CA2, and a novel, structural role of CA7. 相似文献
5.
Synaptic localization of α5 GABA (A) receptors via gephyrin interaction regulates dendritic outgrowth and spine maturation 下载免费PDF全文
GABAA receptor subunit composition is a critical determinant of receptor localization and physiology, with synaptic receptors generating phasic inhibition and extrasynaptic receptors producing tonic inhibition. Extrasynaptically localized α5 GABAA receptors are largely responsible for tonic inhibition in hippocampal neurons. However, we show here that inhibitory synapses also contain a constant level of α5 GABAA receptors throughout neuronal development, as measured by its colocalization with gephyrin, the inhibitory postsynaptic scaffolding protein. Immunoprecipitation of the α5 subunit from both cultured neurons and adult rat brain coimmunoprecipitated gephyrin, confirming this interaction in vivo. Furthermore, the α5 subunit can interact with gephyrin independent of other synaptically localized alpha subunits, as shown by immunoprecipitation experiments in HEK cells. By replacing the α5 predicted gephyrin binding domain (Residues 370–385) with either the high affinity gephyrin binding domain of the α2 subunit or homologous residues from the extrasynaptic α4 subunit that does not interact with gephyrin, α5 GABAA receptor localization shifted into or out of the synapse, respectively. These shifts in the ratio of synaptic/extrasynaptic α5 localization disrupted dendritic outgrowth and spine maturation. In contrast to the predominant view of α5 GABAA receptors being extrasynaptic and modulating tonic inhibition, we identify an intimate association of the α5 subunit with gephyrin, resulting in constant synaptic levels of α5 GABAAR throughout circuit formation that regulates neuronal development. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1241–1251, 2015 相似文献
6.
7.
8.
Masakazu Higurashi Masumi Iketani Kohtaro Takei Naoya Yamashita Reina Aoki Nobutaka Kawahara Yoshio Goshima 《Developmental neurobiology》2012,72(12):1528-1540
Collapsin response mediator protein 1 (CRMP1) and CRMP2 have been known as mediators of extracellular guidance cues such as semaphorin 3A and contribute to cytoskeletal reorganization in the axonal pathfinding process. To date, how CRMP1 and CRMP2 focally regulate axonal pathfinding in the growth cone has not been elucidated. To delineate the local functions of these CRMPs, we carried out microscale‐chromophore‐assisted light inactivation (micro‐CALI), which enables investigation of localized molecular functions with highly spatial and temporal resolutions. Inactivation of either CRMP1 or CRMP2 in the neurite shaft led to arrested neurite outgrowth. Micro‐CALI of CRMP2 in the central domain of the growth cones consistently arrested neurite outgrowth, whereas micro‐CALI of CRMP1 in the same region caused significant lamellipodial retraction, followed by retardation of neurite outgrowth. Focal inactivation of CRMP1 in its half region of the growth cone resulted in the growth cone turning away from the irradiated site. Conversely, focal inactivation of CRMP2 resulted in the growth cone turning toward the irradiated site. These findings suggest different functions for CRMP1 and CRMP2 in growth cone behavior and neurite outgrowth. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2012 相似文献
9.
Kumiko Sengoku Yuji Kurihara Fumio Nakamura Yukio Sasaki Yasufumi Sato Masayuki Yamane Masayuki Matsushita Angus C. Nairn Ken Takamatsu Yoshio Goshima Kohtaro Takei 《Developmental neurobiology》2013,73(3):230-246
Nerve growth cones contain mRNA and its translational machinery and thereby synthesize protein locally. The regulatory mechanisms in the growth cone, however, remain largely unknown. We previously found that the calcium entry‐induced increase of phosphorylation of eukaryotic elongation factor‐2 (eEF2), a key component of mRNA translation, within growth cones showed growth arrest of neurites. Because dephosphorylated eEF2 and phosphorylated eEF2 are known to promote and inhibit mRNA translation, respectively, the data led to the hypothesis that eEF2‐mediating mRNA translation may regulate neurite outgrowth. Here, we validated the hypothesis by using a chromophore‐assisted light inactivation (CALI) technique to examine the roles of localized eEF2 and eEF2 kinase (EF2K), a specific calcium calmodulin‐dependent enzyme for eEF2 phosphorylation, in advancing growth cones of cultured chick dorsal root ganglion (DRG) neurons. The phosphorylated eEF2 was weakly distributed in advancing growth cones, whereas eEF2 phosphorylation was increased by extracellular adenosine triphosphate (ATP)‐evoked calcium transient through P2 purinoceptors in growth cones and resulted in growth arrest of neurites. The increase of eEF2 phosphorylation within growth cones by inhibition of protein phosphatase 2A known to dephosphorylate eEF2 also showed growth arrest of neurites. CALI of eEF2 within growth cones resulted in retardation of neurite outgrowth, whereas CALI of EF2K enhanced neurite outgrowth temporally. Moreover, CALI of EF2K abolished the ATP‐induced retardation of neurite outgrowth. These findings suggest that an eEF2 phosphorylation state localized to the growth cone regulates neurite outgrowth. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013 相似文献
10.
Serotonin 5‐HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons 下载免费PDF全文
Luisa Speranza Josephine Labus Floriana Volpicelli Daria Guseva Enza Lacivita Marcello Leopoldo Gian Carlo Bellenchi Umberto di Porzio Monika Bijata Carla Perrone‐Capano Evgeni Ponimaskin 《Journal of neurochemistry》2017,141(5):647-661
11.
12.
Following spinal cord injury, glial cells are recognized as major environmental factors hampering axon's regenerative responses. However, recent studies suggested that, in certain circumstances, reactive astrocytes may have a permissive role for axonal regeneration and functional recovery. Here, we report that Cdc2 activation in astrocytes is positively linked to axon growth. Cdc2 was strongly, but transiently, induced from reactive astrocytes within and around the injury cavity. Cdc2 levels in primary, non‐neuronal cells prepared from injured spinal cord were up‐regulated by extending the pre‐injury period. Cdc2‐mediated vimentin phosphorylation was strongly induced in astrocytes after long‐term culture (7 days, LTC) as compared with short‐term culture (3 days, STC). Induction levels of phospho‐vimentin in LTC astrocytes were positively associated with increased neurite outgrowth in co‐cultured dorsal root ganglion neurons. β3 integrin mRNA was induced in LTC astrocytes and activation of β3 integrin was regulated by Cdc2 activity. Furthermore, genetic depletion and pharmacological blockade experiments demonstrate that activation of Cdc2 and β3 integrin in LTC astrocytes is required for neurite outgrowth. Our data suggest that the Cdc2 pathway may play an important role in determining phenotypic expression of astrocytes such that astrocytes provide permissive environments for axonal regeneration following spinal cord injury. 相似文献
13.
14.
15.
The atRA-responsive gene neuron navigator 2 functions in neurite outgrowth and axonal elongation 总被引:1,自引:0,他引:1
Muley PD McNeill EM Marzinke MA Knobel KM Barr MM Clagett-Dame M 《Developmental neurobiology》2008,68(13):1441-1453
Neuron navigator 2 (Nav2) was first identified as an all-trans retinoic acid (atRA)-responsive gene in human neuroblastoma cells (retinoic acid-induced in neuroblastoma 1, RAINB1) that extend neurites after exposure to atRA. It is structurally related to the Caenorhabditis elegans unc-53 gene that is required for cell migration and axonal outgrowth. To gain insight into NAV2 function, the full-length human protein was expressed in C. elegans unc-53 mutants under the control of a mechanosensory neuron promoter. Transgene expression of NAV2 rescued the defects in unc-53 mutant mechanosensory neuron elongation, indicating that Nav2 is an ortholog of unc-53. Using a loss-of-function approach, we also show that Nav2 induction is essential for atRA to induce neurite outgrowth in SH-SY5Y cells. The NAV2 protein is located both in the cell body and along the length of the growing neurites of SH-SY5Y cells in a pattern that closely mimics that of neurofilament and microtubule proteins. Transfection of Nav2 deletion constructs in Cos-1 cells reveals a region of the protein (aa 837-1065) that directs localization with the microtubule cytoskeleton. Collectively, this work supports a role for NAV2 in neurite outgrowth and axonal elongation and suggests this protein may act by facilitating interactions between microtubules and other proteins such as neurofilaments that are key players in the formation and stability of growing neurites. 相似文献
16.
17.
Shaojin Li Yaozhong Liang Jianyu Zou Zhenbin Cai Hua Yang Jie Yang Yunlong Zhang Hongsheng Lin Guowei Zhang Minghui Tan 《The Journal of biological chemistry》2022,298(9)
Katanin p60 ATPase-containing subunit A1 (KATNA1) is a microtubule-cleaving enzyme that regulates the development of neural protrusions through cytoskeletal rearrangements. However, the mechanism underlying the linkage of the small ubiquitin-like modifier (SUMO) protein to KATNA1 and how this modification regulates the development of neural protrusions is unclear. Here we discovered, using mass spectrometry analysis, that SUMO-conjugating enzyme UBC9, an enzyme necessary for the SUMOylation process, was present in the KATNA1 interactome. Moreover, GST-pull down and co-immunoprecipitation assays confirmed that KATNA1 and SUMO interact. We further demonstrated using immunofluorescence experiments that KATNA1 and the SUMO2 isoform colocalized in hippocampal neurites. We also performed a bioinformatics analysis of KATNA1 protein sequences to identify three potentially conserved SUMOylation sites (K77, K157, and K330) among vertebrates. Mutation of K330, but not K77 or K157, abolished KATNA1-induced microtubule severing and decreased the level of binding observed for KATNA1 and SUMO2. Cotransfection of SUMO2 and wildtype KATNA1 in COS7 cells increased microtubule severing, whereas no effect was observed after cotransfection with the K330R KATNA1 mutant. Furthermore, in cultured hippocampal neurons, overexpression of wildtype KATNA1 significantly promoted neurite outgrowth, whereas the K330R mutant eliminated this effect. Taken together, our results demonstrate that the K330 site in KATNA1 is modified by SUMOylation and SUMOylation of KATNA1 promotes microtubule dynamics and hippocampal neurite outgrowth. 相似文献
18.
19.
We have previously seen that protein kinase C (PKC) epsilon induces neurite outgrowth and that PKCdelta and PKCtheta elicit apoptosis in neuroblastoma cells. In this study we investigate the effects of cell-permeable C(2)-ceramide on these events in SK-N-BE(2) neuroblastoma cells. C(2)-ceramide abolishes neurite formation induced by overexpression of PKCepsilon and, in cells overexpressing PKCdelta or PKCtheta, ceramide treatment leads to apoptosis. Exposure to C(2)-ceramide also suppressed neurite outgrowth induced by retinoic acid, but ceramide did not abrogate neurite induction by treatment with the ROCK inhibitor Y-27632, demonstrating that C(2)-ceramide is not a general inhibitor of neurite outgrowth. The neurite-suppressing effect occurs independently of cell-death. Furthermore, C(2)-ceramide relocated PKCepsilon and the isolated regulatory domain of PKCepsilon from the cytosol to the perinuclear region. In contrast, neither the localization of PKCdelta nor of PKCtheta was affected by C(2)-ceramide. Taken together, the data indicate that the neurite-inhibiting effect of C(2)-ceramide treatment may be caused by a re-localization of PKCepsilon and thus identify a functional consequence of ceramide effects on PKCepsilon localization. 相似文献
20.
Suresh S McCallum L Lu W Lazar N Perbal B Irvine AE 《Journal of cell communication and signaling》2011,5(3):183-191
Chronic Myeloid Leukaemia (CML) is a myeloproliferative disorder characterized by the expression of the oncoprotein, Bcr-Abl kinase. CCN3 normally functions as a negative growth regulator, but it is downregulated in CML, the mechanism of which is not known. MicroRNAs (miRNAs) are small non-coding RNAs, which negatively regulate protein translation by binding to the complimentary sequences of the 3′ UTR of messenger RNAs. Deregulated miRNA expression has emerged as a hallmark of cancer. In CML, BCR-ABL upregulates oncogenic miRNAs and downregulates tumour suppressor miRNAs favouring leukaemic transformation. We report here that the downregulation of CCN3 in CML is mediated by BCR-ABL dependent miRNAs. Using the CML cell line K562, we profiled miRNAs, which are BCR-ABL dependent by transfecting K562 cells with anti-BCR-ABL siRNA. MiRNA expression levels were quantified using the Taqman Low Density miRNA array platform. From the miRNA target prediction databases we identified miRNAs that could potentially bind to CCN3 mRNA and reduce expression. Of these, miR-130a, miR-130b, miR-148a, miR-212 and miR-425-5p were significantly reduced on BCR-ABL knockdown, with both miR-130a and miR-130b decreasing the most within 24 h of siRNA treatment. Transfection of mature sequences of miR-130a and miR-130b individually into BCR-ABL negative HL60 cells resulted in a decrease of both CCN3 mRNA and protein. The reduction in CCN3 was greatest with overexpression of miR-130a whereas miR-130b overexpression resulted only in marginal repression of CCN3. This study shows that miRNAs modulate CCN3 expression. Deregulated miRNA expression initiated by BCR-ABL may be one mechanism of downregulating CCN3 whereby leukaemic cells evade negative growth regulation. 相似文献