首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mature microRNAs (miRNAs) are single-stranded RNA molecules of 17-24 nucleotides (nt) in length that are encoded in the genomes of plants and animals. The seminal discoveries of miRNA made in C. elegans have led the way to the rampant discoveries being made today in this field. Since each miRNA is predicted and in some cases confirmed to regulate multiple genes, the potential regulatory circuitry afforded by miRNAs is thought to be enormous and could amount to regulation of >30% of all human genes. Due to the sequences of many of the miRNAs being highly homologous among organisms, the huge potential of miRNAs to regulate gene expression, and the hints of miRNAs being useful in both diagnostics and therapeutics, it is no wonder these small RNAs are gaining such popularity in both the academic and industrial settings. It is now becoming clear that the miRNA gene class represents a very important gene regulatory network. This article reviews the initial discoveries of miRNA that began in the nematode C. elegans, and extends into what is known about miRNAs and miRNA processing factors in mouse development and human disease.  相似文献   

3.
4.
MicroRNAs (miRNAs) are members of a family of non-coding RNAs of 8-24 nucleotide RNA molecules that regulate target mRNAs. The first miRNAs, lin-4 and let-7, were first discovered in the year 1993 by Ambros, Ruvkun, and co-workers while studying development in Caenorhabditis elegans. miRNAs can play vital functions form C. elegans to higher vertebrates by typical Watson-Crick base pairing to specific mRNAs to regulate the expression of a specific gene. It has been well established that multicellular eukaryotes utilize miRNAs to regulate many biological processes such as embryonic development, proliferation, differentiation, and cell death. Recent studies have shown that miRNAs may provide new insight in cancer research. A recent study demonstrated that more than 50% of miRNA genes are located in fragile sites and cancer-associated genomic regions, suggesting that miRNAs may play a more important role in the pathogenesis of human cancers. Exploiting the emerging knowledge of miRNAs for the development of new human therapeutic applications will be important. Recent studies suggest that miRNA expression profiling can be correlated with disease pathogenesis and prognosis, and may ultimately be useful in the management of human cancer. In this review, we focus on how miRNAs regulate tumorigenesis by acting as oncogenes and anti-oncogenes in higher eukaryotes.  相似文献   

5.
Current perspectives in intronic micro RNAs (miRNAs)   总被引:5,自引:0,他引:5  
  相似文献   

6.
7.
龙茹  李玉花  徐启江 《生命科学》2007,19(2):127-131
microRNAs(miRNAs)是生物体内源长度约为20—23个核苷酸的非编码小RNA,通过与靶mRNA的互补配对而在转录后水平上对基因的表达进行负调控,导致mRNA的降解或翻译抑制。到目前为止,已报道有几千种miRNA存在于动物、植物、真菌等多细胞真核生物中,进化上高度保守。在植物和动物中,miRNA虽然都是通过与其靶基因的相互作用来调节基因表达,进而调控生物体的生长发育,但miRNA执行这种调控作用的机理却不尽相同。同时miRNA在动植物体内的形成过程也存在很多的不同之处。本文综述了动植物miRNA的生物合成、作用机理、生物功能等方面的研究进展。  相似文献   

8.
9.
Aberrant regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a RNA/DNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP-43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of different isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP-43 in miRNA processing. A number of TDP-43 associated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p. In contrast, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a-3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.  相似文献   

10.
11.
microRNAs (miRNAs) encode a novel class of small, non-coding RNAs that regulate gene expression post-trancriptionally. miRNAs comprise one of the major non-coding RNA families, whose diverse biological functions and unusual capacity for gene regulation have attracted enormous interests in the RNA world. Over the past 16 years, genetic, biochemical and computational approaches have greatly shaped the growth of the field, leading to the identification of thousands of miRNA genes in nearly all metazoans. The key molecular machinery for miRNA biogenesis and silencing has been identified, yet the precise biochemical and regulatory mechanisms still remain elusive. However, recent findings have shed new light on how miRNAs are generated and how they function to repress gene expression. miRNAs provide a paradigm for endogenous small RNAs that mediate gene silencing at a genome-wide level. The gene silencing mediated by these small RNAs constitutes a major component of gene regulation during various developmental and physiological processes. The accumulating knowledge about their biogenesis and gene silencing mechanism will add a new dimension to our understanding about the complex gene regulatory networks.  相似文献   

12.
miRNA*是在miRNA加工成熟过程中与其互补的大约22个核苷酸的RNA序列。传统观点认为miRNA*是miRNA生物合成中形成的没有功能的副产品。然而最近的研究发现miRNA*s与miRNA一样, 主要介导转录后的基因调控网络; 但不同的是, miRNA与Argonaute1蛋白(AGO1)结合形成RNA诱导的沉默复合体(RISC), 而miRNA*却在AGO2的帮助下形成RISC复合体进行RNA干涉, 这点与siRNA的作用方式类似。文章从miRNA*的生物合成、生物学特性和功能等方面综述了miRNA*最新研究进展。  相似文献   

13.
MicroRNAs (miRNAs) are 21–25-nucleotide-long, noncoding RNAs that are involved in translational regulation. Most miRNAs derive from a two-step sequential processing: the generation of pre-miRNA from pri-miRNA by the Drosha/DGCR8 complex in the nucleus, and the generation of mature miRNAs from pre-miRNAs by the Dicer/TRBP complex in the cytoplasm. Sequence variation around the processing sites, and sequence variations in the mature miRNA, especially the seed sequence, may have profound affects on miRNA biogenesis and function. In the context of analyzing the roles of miRNAs in Schizophrenia and Autism, we defined at least 24 human X-linked miRNA variants. Functional assays were developed and performed on these variants. In this study we investigate the affects of single nucleotide polymorphisms (SNPs) on the generation of mature miRNAs and their function, and report that naturally occurring SNPs can impair or enhance miRNA processing as well as alter the sites of processing. Since miRNAs are small functional units, single base changes in both the precursor elements as well as the mature miRNA sequence may drive the evolution of new microRNAs by altering their biological function. Finally, the miRNAs examined in this study are X-linked, suggesting that the mutant alleles could be determinants in the etiology of diseases.  相似文献   

14.
MicroRNAs (miRNAs) are endogenous, small non‐coding RNAs known to regulate expression of protein‐coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein‐coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self‐renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.  相似文献   

15.
MicroRNAs play central roles in controlling gene expression in human cells. Sequencing data show that many miRNAs are produced at different levels and as multiple isoforms that can vary in length at their 5′ or 3′ ends, but the biogenesis and functional significance of these RNAs are largely unknown. We show here that the human trans-activation response (TAR) RNA binding protein (TRBP), a known molecular partner of the miRNA processing enzyme Dicer, changes the rates of pre-miRNA cleavage in an RNA-structure-specific manner. Furthermore, TRBP can trigger the generation of iso-miRNAs (isomiRs) that are longer than the canonical sequence by one nucleotide. We show that this change in miRNA processing site can alter guide strand selection, resulting in preferential silencing of a different mRNA target. These results implicate TRBP as a key regulator of miRNA processing and targeting in humans.  相似文献   

16.
MicroRNAs (miRNAs) are small regulatory RNAs that are essential in all studied metazoans. Research has focused on the prediction and identification of novel miRNAs, while little has been done to validate, annotate, and characterize identified miRNAs. Using Illumina sequencing, ~20 million small RNA sequences were obtained from Caenorhabditis elegans. Of the 175 miRNAs listed on the miRBase database, 106 were validated as deriving from a stem-loop precursor with hallmark characteristics of miRNAs. This result suggests that not all sequences identified as miRNAs belong in this category of small RNAs. Our large data set of validated miRNAs facilitated the determination of general sequence and structural characteristics of miRNAs and miRNA precursors. In contrast to previous observations, we did not observe a preference for the 5' nucleotide of the miRNA to be unpaired compared to the 5' nucleotide of the miRNA*, nor a preference for the miRNA to be on either the 5' or 3' arm of the miRNA precursor stem-loop. We observed that steady-state pools of miRNAs have fairly homogeneous termini, especially at their 5' end. Nearly all mature miRNA-miRNA* duplexes had two nucleotide 3' overhangs, and there was a preference for a uracil in the first and ninth position of the mature miRNA. Finally, we observed that specific nucleotides and structural distortions were overrepresented at certain positions adjacent to Drosha and Dicer cleavage sites. Our study offers a comprehensive data set of C. elegans miRNAs and their precursors that significantly decreases the uncertainty associated with the identity of these molecules in existing databases.  相似文献   

17.
Background: MicroRNAs (miRNAs) are a significant type of non-coding RNAs, which usually were encoded by endogenous genes with about ~22 nt nucleotides. Accumulating biological experiments have shown that miRNAs have close associations with various human diseases. Although traditional experimental methods achieve great successes in miRNA-disease interaction identification, these methods also have some limitations. Therefore, it is necessary to develop computational method to predict miRNA-disease interactions. Methods: Here, we propose a computational framework (MDVSI) to predict interactions between miRNAs and diseases by integrating miRNA topological similarity and functional similarity. Firstly, the CosRA index is utilized to measure miRNA similarity based on network topological feature. Then, in order to enhance the reliability of miRNA similarity, the functional similarity and CosRA similarity are integrated based on linear weight method. Further, the potential miRNA-disease associations are predicted by using recommendation method. In addition, in order to overcome limitation of recommendation method, for new disease, a new strategy is proposed to predict potential interactions between miRNAs and new disease based on disease functional similarity. Results: To evaluate the performance of different methods, we conduct ten-fold cross validation and de novo test in experiment and compare MDVSI with two the-state-of-art methods. The experimental result shows that MDVSI achieves an AUC of 0.91, which is at least 0.012 higher than other compared methods. Conclusions: In summary, we propose a computational framework (MDSVI) for miRNA-disease interaction prediction. The experiment results demonstrate that it outperforms other the-state-of-the-art methods. Case study shows that it can effectively identify potential miRNA-disease interactions.  相似文献   

18.
刘永平  杨静  刘蕴 《昆虫学报》2013,56(9):1026-1037
MicroRNA (miRNA)是20世纪90年代发现的一类由内源基因编码的长度约21~24 nt的非编码单链RNA分子, 广泛存在于真核生物中, 对基因的转录后调控起着非常重要的作用。本文简要介绍了miRNA的产生与调控机制, 同时从昆虫miRNA的发现鉴定、 靶基因预测与功能验证, 昆虫miRNA的序列特征与进化, 果蝇和非果蝇类昆虫miRNA生物学功能以及供昆虫miRNA研究的网络平台等方面对昆虫miRNA的最新进展进行了综述, 旨在为进一步研究昆虫miRNA提供借鉴和参考。对昆虫miRNA的研究表明其参与调控细胞分化、 增殖及凋亡、 胚胎发育、 器官发生、 形态构建、 生理代谢、 环境协调、 行为认知、 免疫防御等几乎所有的生物过程。因此, 深入研究其生物功能、 调控网络和开发应用等可能成为今后一段时间昆虫miRNA研究的重要内容。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号