共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
4.
5.
6.
7.
8.
Erin E. Heyer James Blackburn 《BioEssays : news and reviews in molecular, cellular and developmental biology》2020,42(7):2000016
Fusion genes formed by chromosomal rearrangements are common drivers of cancer. Recent innovations in the field of next-generation sequencing (NGS) have seen a dynamic shift from traditional fusion detection approaches, such as visual characterization by fluorescence, to more precise multiplexed methods. There are many different NGS-based approaches to fusion gene detection and deciding on the most appropriate method can be difficult. Beyond the experimental approach, consideration needs to be given to factors such as the ease of implementation, processing time, associated costs, and the level of expertise required for data analysis. Here, the different NGS-based methods for fusion gene detection, the basic principles underlying the techniques, and the benefits and limitations of each approach are reviewed. This article concludes with a discussion of how NGS will impact fusion gene detection in a clinical context and from where the next innovations are evolving. 相似文献
9.
L. Küttel A. Letko I. M. Hfliger H. Signer‐Hasler S. Joller G. Hirsbrunner G. Mszros J. Slkner C. Flury T. Leeb C. Drgemüller 《Animal genetics》2019,50(5):423-429
A specific white spotting phenotype, termed finching or line‐backed spotting, is known for all Pinzgauer cattle and occurs occasionally in Tux‐Zillertaler cattle, two Austrian breeds. The so‐called Pinzgauer spotting is inherited as an autosomal incompletely dominant trait. A genome‐wide association study using 27 white spotted and 16 solid‐coloured Tux‐Zillertaler cattle, based on 777k SNP data, revealed a strong signal on chromosome 6 at the KIT locus. Haplotype analyses defined a critical interval of 122 kb downstream of the KIT coding region. Whole‐genome sequencing of a Pinzgauer cattle and comparison to 338 control genomes revealed a complex structural variant consisting of a 9.4‐kb deletion and an inversely inserted duplication of 1.5 kb fused to a 310‐kb duplicated segment from chromosome 4. A diagnostic PCR was developed for straightforward genotyping of carriers for this structural variant (KITPINZ) and confirmed that the variant allele was present in all Pinzgauer and most of the white spotted Tux‐Zillertaler cattle. In addition, we detected the variant in all Slovenian Cika, British Gloucester and Spanish Berrenda en negro cattle with similar spotting patterns. Interestingly, the KITPINZ variant occurs in some white spotted animals of the Swiss breeds Evolèner and Eringer. The introgression of the KITPINZ variant confirms admixture and the reported historical relationship of these short‐headed breeds with Austrian Tux‐Zillertaler and suggests a mutation event, occurring before breed formation. 相似文献
10.
11.
Bo-Rahm Lee Suhyung Cho Yoseb Song Sun Chang Kim Byung-Kwan Cho 《Molecules and cells》2013,35(5):359-370
Synthetic biology is an emerging discipline for designing and synthesizing predictable, measurable, controllable, and transformable biological systems. These newly designed biological systems have great potential for the development of cheaper drugs, green fuels, biodegradable plastics, and targeted cancer therapies over the coming years. Fortunately, our ability to quickly and accurately engineer biological systems that behave predictably has been dramatically expanded by significant advances in DNA-sequencing, DNA-synthesis, and DNA-editing technologies. Here, we review emerging technologies and methodologies in the field of building designed biological systems, and we discuss their future perspectives. 相似文献
12.
Huimin Li;Zhan Qi;Limin Xie;Chanjuan Hao;Wei Li; 《Molecular Genetics & Genomic Medicine》2024,12(2):e2391
Intellectual disability (ID) is a con neurodevelopmental disorder in children. The genetic etiology of ID is complex, but more subtypes are defined due to the broad application of next-generation sequencing. 相似文献
13.
高通量测序技术在动植物研究领域中的应用 总被引:4,自引:0,他引:4
高通量测序是核酸测序研究的一次革命性技术创新, 该技术以极低的单碱基测序成本和超高的数据产出量为特征, 为基因组学和后基因组学研究带来了新的科研方法和解决方案. 在动植物研究领域, 高通量测序引领了一次具有里程碑意义的科学研究模式革新, 科研人员可利用该技术在基因组、转录组和表观基因组等领域展开多层次多方面多水平研究. 本文就高通量测序技术应用于动植物基因组学和功能基因组学研究进展进行了系统阐述, 并对当前高通量测序技术的现状和热点及未来的发展趋势作了深入剖析和讨论. 相似文献
14.
15.
16.
17.
18.
The discovery of rare genetic variants through next generation sequencing is a very challenging issue in the field of human genetics. We propose a novel region‐based statistical approach based on a Bayes Factor (BF) to assess evidence of association between a set of rare variants (RVs) located on the same genomic region and a disease outcome in the context of case‐control design. Marginal likelihoods are computed under the null and alternative hypotheses assuming a binomial distribution for the RV count in the region and a beta or mixture of Dirac and beta prior distribution for the probability of RV. We derive the theoretical null distribution of the BF under our prior setting and show that a Bayesian control of the false Discovery Rate can be obtained for genome‐wide inference. Informative priors are introduced using prior evidence of association from a Kolmogorov‐Smirnov test statistic. We use our simulation program, sim1000G, to generate RV data similar to the 1000 genomes sequencing project. Our simulation studies showed that the new BF statistic outperforms standard methods (SKAT, SKAT‐O, Burden test) in case‐control studies with moderate sample sizes and is equivalent to them under large sample size scenarios. Our real data application to a lung cancer case‐control study found enrichment for RVs in known and novel cancer genes. It also suggests that using the BF with informative prior improves the overall gene discovery compared to the BF with noninformative prior. 相似文献
19.
Alison Hamilton Martine Ttreault David A. Dyment Ruobing Zou Kristin Kernohan Michael T. Geraghty Taila Hartley Kym M. Boycott 《Molecular Genetics & Genomic Medicine》2016,4(5):504-512
The clinical translation of next‐generation sequencing has created a paradigm shift in the diagnostic assessment of individuals with suspected rare genetic diseases. Whole‐exome sequencing (WES) simultaneously examines the majority of the coding portion of the genome and is rapidly becoming accepted as an efficient alternative to clinical Sanger sequencing for diagnosing genetically heterogeneous disorders. Among reports of the clinical and diagnostic utility of WES, few studies to date have directly compared its concordance to Sanger sequencing, which is considered the clinical “gold standard”. We performed a direct comparison of 391 coding and noncoding polymorphisms and variants of unknown significance identified by clinical Sanger sequencing to the WES results of 26 patients. Of the 150 well‐covered coding variants identified by Sanger sequencing, 146 (97.3%) were also reported by WES. Nine genes were excluded from the comparison due to consistently low coverage in WES, which might be attributed to the use of older exome capture kits. We performed confirmatory Sanger sequencing of discordant variants; including five variants with discordant bases and four with discordant zygosity. Confirmatory Sanger sequencing supported the original Sanger report for three of the five discordant bases, one was shown to be a false positive supporting the WES data, and one result differed from both the Sanger and WES data. Two of the discordant zygosity results supported Sanger and the other two supported WES data. We report high concordance for well‐covered coding variants, supporting the use of WES as a screening tool for heterogeneous disorders, and recommend the use of supplementary Sanger sequencing for poorly‐covered genes when the clinical suspicion is high. Importantly, despite remaining difficulties with achieving complete coverage of the whole exome, 10 (38.5%) of the 26 compared patients were diagnosed through WES. 相似文献