首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
Plant–soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short‐term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non‐native species, or a mixed plant community in different plots in a common‐garden experiment. After 4 years, plants were removed and one native and one non‐native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non‐native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non‐native, Centaurea diffusa, and non‐native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata. Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common‐garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non‐native plant community on non‐native soils. In contrast, when PSF effects were removed, the model predicted that non‐native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank‐order abundance of native and non‐native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors through soil‐mediated effects.  相似文献   

2.
三维土壤异质性对种子萌发影响的实验研究 土壤生物通过植物-土壤的反馈作用调控植物间相互作用和外来植物入侵。因此,探明植物-土壤反馈作用种间差异的形成原因,对于预测土壤生物在植物入侵过程中的作用具有重要价值。近期的研究发现,植物性状可以用于预测植物-土壤反馈作用。同时,研究发现植物入侵也与植物的一些性状相关联,暗示植物-土壤反馈作用通过植物性状与外来植物入侵之间存在关联,但尚缺乏实验证明。鉴于此,本研究选取了3对近缘入侵和本土植物为对象,比较了其植物-土壤反馈作用,探讨了植物-土壤反馈作用与植物根部性状的关联性。首先,通过种植实验植物3个月,驯化采自于田间的土壤。之后,将实验植物种植于对照和灭菌处理的同种或近缘(同科或同属)种驯化过的土壤中,评价同种或近缘种根际土壤生物对植物生长的净反馈作用(与灭菌土比较),并比较了两类土壤生物对植物的反馈作用。总体而言,同种或近缘种根际土壤生物对入侵与本土植物的净反馈作用无显著差异,两类土壤生物对入侵和本土植物的反馈作用亦无显著差异。土壤反馈作用的强度和种植于对照土壤中植物细根生物量比存在正相关关系,且入侵与本土植物细根生物量比无显著差异。这一发现表明:相似的细根生物量比可能是导致入侵与本土植物间土壤反馈作用无差异的一个重要原因。为提升人们对土壤生物在植物入侵过程中 作用的认识,亟需选取更多入侵与本土植物(尤其是亲缘关系较远的物种)开展实验研究,进一步探明植物性状、土壤反馈作用和外来植物入侵之间的关联性。  相似文献   

3.
Seedling performance is often a limiting factor in ecological restoration. Changes in the soil microbial community generated by invasive plants contribute to seedling failure. A method to remediate invasive species‐induced changes to the soil microbial community that results in increased native species seedling performance and decreased invasive species seedling performance could have a large impact on the success of many restoration efforts. In a greenhouse experiment, we first examined the changes in the soil microbial community created by invasive compared to native grasses. Then, we investigated four microbial treatments (bacterial inoculant, fungal inoculant, fungicide, and bactericide/fungicide) to remediate microbial plant–soil feedbacks (PSFs) created by invasive species Bromus inermis and Poa pratensis and increase the performance of natives Andropogon gerardii, Elymus canadensis, Pascopyrum smithii, and Schizachyrium scoparium. We found that the PSF mitigation treatments had some context‐dependent utility for restoration. For example, all of the treatments decreased the performance of B. inermis and fungal inoculant decreased the performance of P. pratensis. However, no single treatment increased the performance of all natives. Fungicide increased the performance of A. gerardii and E. canadensis in soil previously occupied by B. inermis and the performance of S. scoparium in soil previously occupied by P. pratensis. If validated in the field, PSF mitigation treatments may have utility for restoration practitioners.  相似文献   

4.
Plant–soil feedback (PSF) has gained attention as a mechanism promoting plant growth and coexistence. However, most PSF research has measured monoculture growth in greenhouse conditions. Translating PSFs into effects on plant growth in field communities remains an important frontier for PSF research. Using a 4‐year, factorial field experiment in Jena, Germany, we measured the growth of nine grassland species on soils conditioned by each of the target species (i.e., 72 PSFs). Plant community models were parameterized with or without these PSF effects, and model predictions were compared to plant biomass production in diversity–productivity experiments. Plants created soils that changed subsequent plant biomass by 40%. However, because they were both positive and negative, the average PSF effect was 14% less growth on “home” than on “away” soils. Nine‐species plant communities produced 29 to 37% more biomass for polycultures than for monocultures due primarily to selection effects. With or without PSF, plant community models predicted 28%–29% more biomass for polycultures than for monocultures, again due primarily to selection effects. Synthesis: Despite causing 40% changes in plant biomass, PSFs had little effect on model predictions of plant community biomass across a range of species richness. While somewhat surprising, a lack of a PSF effect was appropriate in this site because species richness effects in this study were caused by selection effects and not complementarity effects (PSFs are a complementarity mechanism). Our plant community models helped us describe several reasons that even large PSF may not affect plant productivity. Notably, we found that dominant species demonstrated small PSF, suggesting there may be selective pressure for plants to create neutral PSF. Broadly, testing PSFs in plant communities in field conditions provided a more realistic understanding of how PSFs affect plant growth in communities in the context of other species traits.  相似文献   

5.
The importance of plant–soil feedback (PSF) has long been recognized, but the current knowledge on PSF patterns and the related mechanisms mainly stems from laboratory experiments. We aimed at addressing PSF effects on community performance and their determinants using an invasive forb Solidago canadensis. To do so, we surveyed 81 pairs of invaded versus uninvaded plots, collected soil samples from these pairwise plots, and performed an experiment with microcosm plant communities. The magnitudes of conditioning soil abiotic properties and soil biotic properties by S. canadensis were similar, but the direction was opposite; altered abiotic and biotic properties influenced the production of subsequent S. canadensis communities and its abundance similarly. These processes shaped neutral S. canadensis–soil feedback effects at the community level. Additionally, the relative dominance of S. canadensis increased with its ability of competitive suppression in the absence and presence of S. canadensis–soil feedbacks, and S. canadensis‐induced decreases in native plant species did not alter soil properties directly. These findings provide a basis for understanding PSF effects and the related mechanisms in the field conditions and also highlight the importance of considering PSFs holistically.  相似文献   

6.
Aims Invasive plants commonly occupy disturbed soils, thereby providing a stage for understanding the role of disturbance-enhanced resources in plant invasions. Here, we addressed how soil space and soil nutrients affect the growth and competitive effect of invasive plants and whether this effect varies with different invaders.Methods We conducted an experiment in which two invasive plants (Bromus tectorum and Centaurea maculosa) and one native species (Poa pratensis) were grown alone or together in four habitats consisting of two levels of soil space and nutrients. At the end of the experiment, we determined the total biomass, biomass allocation and relative interaction intensity of B. tectorum, C. maculosa and P. pratensis .Important findings Across two invaders, B. tectorum and C. maculosa, increased soil nutrients had greater positive effects on their growth than increased soil space, the effects of soil space on root weight ratio were greater than those of soil nutrients, and their competitive effect decreased with soil space but increased with soil nutrients. These findings suggest that changing soil space and nutrients differentially influence the growth and competitive advantages of two invaders. Bromus tectorum benefited more from increased soil resources than C. maculosa. Soil space and nutrients affected the biomass allocation of C. maculosa but not B. tectorum. The competitive effect of B. tectorum was unaffected by soil space and soil nutrients, but the opposite was the case for C. maculosa. Thus, the effects of soil space and nutrients on growth and competitive ability depend on invasive species identity.  相似文献   

7.
Plant‐soil feedbacks (PSFs) have been shown to strongly affect plant performance under controlled conditions, and PSFs are thought to have far reaching consequences for plant population dynamics and the structuring of plant communities. However, thus far the relationship between PSF and plant species abundance in the field is not consistent. Here, we synthesize PSF experiments from tropical forests to semiarid grasslands, and test for a positive relationship between plant abundance in the field and PSFs estimated from controlled bioassays. We meta‐analyzed results from 22 PSF experiments and found an overall positive correlation (0.12 ≤ r¯ ≤ 0.32) between plant abundance in the field and PSFs across plant functional types (herbaceous and woody plants) but also variation by plant functional type. Thus, our analysis provides quantitative support that plant abundance has a general albeit weak positive relationship with PSFs across ecosystems. Overall, our results suggest that harmful soil biota tend to accumulate around and disproportionately impact species that are rare. However, data for the herbaceous species, which are most common in the literature, had no significant abundance‐PSFs relationship. Therefore, we conclude that further work is needed within and across biomes, succession stages and plant types, both under controlled and field conditions, while separating PSF effects from other drivers (e.g., herbivory, competition, disturbance) of plant abundance to tease apart the role of soil biota in causing patterns of plant rarity versus commonness.  相似文献   

8.
Positive plant–soil feedback (PSF) may be a mechanism of invader dominance, whereas PSF is often negative for native species. Previous work in Eastern deciduous forests of North America has shown that the invasive liana Euonymus fortunei participates in a net positive PSF with native groundcover Asarum canadense, indicating that PSF may contribute to invader dominance. However, to identify PSF as a general invasion driver for Euonymus, we must consider the average net pairwise feedback for multiple native–invasive species pairs, and compare this to the average net pairwise feedback amongst native–native pairs. Here, we test E. fortunei in net pairwise feedback against five native species, comparing native–invader feedback to feedback amongst natives over a gradient of light availability. PSF was on average neutral for invader–native pairs and on average negative for native–native pairs, indicating that Euonymus does not face the same constraints that limit the growth of native species. Because even neutral feedback can facilitate invasion, results indicate that PSF may facilitate invader dominance over a broad range of native functional groups and light conditions in Eastern deciduous forest.  相似文献   

9.
Soil conditioning occurs when plants alter features of their soil environment. When these alterations affect subsequent plant growth, it is a plant soil feedback. Plant–soil feedbacks are an important and understudied aspect of aboveground–belowground linkages in plant ecology that influence plant coexistence, invasion and restoration. Here, we examine plant–soil feedback dynamics of seven co‐occurring native and non‐native grass species to address the questions of how plants modify their soil environment, do those modifications inhibit or favor their own species relative to other species, and do non‐natives exhibit different plant–soil feedback dynamics than natives. We used a two‐phase design, wherein a first generation of plants was grown to induce species‐specific changes in the soil and a second generation of plants was used as a bioassay to determine the effects of those changes. We also used path‐analysis to examine the potential chain of effects of the first generation on soil nutrients and soil microbial composition and on bioassay plant performance. Our findings show species‐specific (rather than consistent within groups of natives and non‐natives) soil conditioning effects on both soil nutrients and the soil microbial community by plants. Additionally, native species produced plant–soil feedback types that benefit other species more than themselves and non‐native invasive species tended to produce plant–soil feedback types that benefit themselves more than other species. These results, coupled with previous field observations, support hypotheses that plant–soil feedbacks may be a mechanism by which some non‐native species increase their invasive potential and plant–soil feedbacks may influence the vulnerability of a site to invasion.  相似文献   

10.
Climate change and plant invasions: restoration opportunities ahead?   总被引:1,自引:0,他引:1  
Rather than simply enhancing invasion risk, climate change may also reduce invasive plant competitiveness if conditions become climatically unsuitable. Using bioclimatic envelope modeling, we show that climate change could result in both range expansion and contraction for five widespread and dominant invasive plants in the western United States. Yellow starthistle ( Centaurea solstitialis ) and tamarisk ( Tamarix spp.) are likely to expand with climate change. Cheatgrass ( Bromus tectorum ) and spotted knapweed ( Centaurea biebersteinii ) are likely to shift in range, leading to both expansion and contraction. Leafy spurge ( Euphorbia esula ) is likely to contract. The retreat of once-intractable invasive species could create restoration opportunities across millions of hectares. Identifying and establishing native or novel species in places where invasive species contract will pose a considerable challenge for ecologists and land managers. This challenge must be addressed before other undesirable species invade and eliminate restoration opportunities.  相似文献   

11.
12.
Understanding how competition from invasive species and soil conditions individually and interactively affect native performance will increase knowledge of invasion dynamics and can be used to improve the success of restoration plans. This study, conducted in Reno NV, USA, uses a two-phase plant?Csoil feedback experiment coupled with a target-neighbor competition design to examine the individual and interactive effects of both soil conditions and invasive neighbors on native performance. Study species include invasive species (Bromus tectorum and Agropyron cristatum) and native species (Elymus elymoides and Pseudoroegneria spicata). Results indicate that both plant performance and competitive interactions were influenced by species-specific soil conditioning. Specifically, invasive B. tectorum generated a larger competitive effect on natives than invasive A. cristatum; however, only A. cristatum conditioned soil in a manner that increased competitive effects of conspecifics on natives. Native P. spicata was relatively unaffected by soil conditioning and conversely, E. elymoides was strongly affected by soil conditioning. Few previous studies have examined soil conditioning and the interaction of soil conditioning and neighbor effects that both are potentially important mechanisms in structuring plant communities and influencing plant invasion.  相似文献   

13.
Plant-soil feedbacks: a meta-analytical review   总被引:2,自引:0,他引:2  
Plants can change soil biology, chemistry and structure in ways that alter subsequent plant growth. This process, referred to as plant–soil feedback (PSF), has been suggested to provide mechanisms for plant diversity, succession and invasion. Here we use three meta-analytical models: a mixed model and two Bayes models, one correcting for sampling dependence and one correcting for sampling and hierarchical dependence (delta-splitting model) to test these hypotheses. All three models showed that PSFs have medium to large negative effects on plant growth, and especially grass growth, the life form for which we had the most data. This supports the hypothesis that PSFs, through negative frequency dependence, maintain plant diversity, especially in grasslands. PSFs were also large and negative for annuals and natives, but the delta-splitting model indicated that more studies are needed for these results to be conclusive. Our results support the hypotheses that PSFs encourage successional replacements and plant invasions. Most studies were performed using monocultures of grassland species in greenhouse conditions. Future research should examine PSFs in plant communities, non-grassland systems and field conditions.  相似文献   

14.
Disturbance is one of the most important factors promoting exotic invasion. However, if disturbance per se is sufficient to explain exotic success, then "invasion" abroad should not differ from "colonization" at home. Comparisons of the effects of disturbance on organisms in their native and introduced ranges are crucial to elucidate whether this is the case; however, such comparisons have not been conducted. We investigated the effects of disturbance on the success of Eurasian native Centaurea solstitialis in two invaded regions, California and Argentina, and one native region, Turkey, by conducting field experiments consisting of simulating different disturbances and adding locally collected C. solstitialis seeds. We also tested differences among C. solstitialis genotypes in these three regions and the effects of local soil microbes on C. solstitialis performance in greenhouse experiments. Disturbance increased C. solstitialis abundance and performance far more in nonnative ranges than in the native range, but C. solstitialis biomass and fecundity were similar among populations from all regions grown under common conditions. Eurasian soil microbes suppressed growth of C. solstitialis plants, while Californian and Argentinean soil biota did not. We suggest that escape from soil pathogens may contribute to the disproportionately powerful effect of disturbance in introduced regions.  相似文献   

15.
Aims Changes in soil microbial communities after occupation by invasive alien plants can represent legacy effects of invasion that may limit recolonization and establishment of native plant species in soils previously occupied by the invader. In this study, for three sites in southern Germany, we investigated whether invasion by giant goldenrod (Solidago gigantea) leads to changes in soil biota that result in reduced growth of native plants compared with neighbouring uninvaded soils.Methods We grew four native plant species as a community and treated those plants with soil solutions from invaded or uninvaded soils that were sterilized, or live, with live solutions containing different fractions of the soil biota using a decreasing sieve mesh-size approach. We measured aboveground biomass of the plants in the communities after a 10-week growth period.Main Findings Across all three sites and regardless of invasion, communities treated with <20 μm soil biota or sterilized soil solutions had significantly greater biomass than communities treated with the complete soil biota solution. This indicates that soil biota>20 μm are more pathogenic to the native plants than smaller organisms in these soils. Across all three sites, there was only a non-significant tendency for the native community biomass to differ among soil solution types, depending on whether or not the soil was invaded. Only one site showed significant differences in community biomass among soil solution types, depending on whether or not the soil was invaded; community biomass was significantly lower when treated with the complete soil biota solution than with soil biota <20 μm or sterilized soil solutions, but only for the invaded soil. Our findings suggest that efforts to restore native communities on soils previously invaded by Solidago gigantea are unlikely to be hindered by changes in soil microbial community composition as a result of previous invasion.  相似文献   

16.
Plants interact simultaneously with each other and with soil biota, yet the relative importance of competition vs. plant–soil feedback (PSF) on plant performance is poorly understood. Using a meta‐analysis of 38 published studies and 150 plant species, we show that effects of interspecific competition (either growing plants with a competitor or singly, or comparing inter‐ vs. intraspecific competition) and PSF (comparing home vs. away soil, live vs. sterile soil, or control vs. fungicide‐treated soil) depended on treatments but were predominantly negative, broadly comparable in magnitude, and additive or synergistic. Stronger competitors experienced more negative PSF than weaker competitors when controlling for density (inter‐ to intraspecific competition), suggesting that PSF could prevent competitive dominance and promote coexistence. When competition was measured against plants growing singly, the strength of competition overwhelmed PSF, indicating that the relative importance of PSF may depend not only on neighbour identity but also density. We evaluate how competition and PSFs might interact across resource gradients; PSF will likely strengthen competitive interactions in high resource environments and enhance facilitative interactions in low‐resource environments. Finally, we provide a framework for filling key knowledge gaps and advancing our understanding of how these biotic interactions influence community structure.  相似文献   

17.
Plant–soil feedbacks (PSF) strongly influence plant performance. However, to what extent these PSF effects are persistent in the soil and how they are altered by species that subsequently condition the soil is unclear. Here we test how conspecific and heterospecific soil‐conditioning effects interact across different soil‐conditioning phases. We conducted a fully factorial glasshouse experiment where six plant species conditioned soils in two consecutive phases and measured the performance of Jacobaea vulgaris. The species that conditioned the soil during the second conditioning phase strongly determined the performance of J. vulgaris, but also the order and combination of species that conditioned the soil in the two phases accounted for a large part of the variance. For shoot biomass this interaction was the dominant variance component. We show that soil conditioning legacies carry‐over and interact with the conditioning effects of succeeding plants. In the field, species replacements at the patch level often appear to be unpredictable and we suggest that sequential feedbacks may explain these apparently unpredictable transitions.  相似文献   

18.
Interactions between introduced plants and soils they colonize are central to invasive species success in many systems. Belowground biotic and abiotic changes can influence the success of introduced species as well as their native competitors. All plants alter soil properties after colonization but, in the case of many invasive plant species, it is unclear whether the strength and direction of these soil conditioning effects are due to plant traits, plant origin, or local population characteristics and site conditions in the invaded range. Phragmites australis in North America exists as a mix of populations of different evolutionary origin. Populations of endemic native Phragmites australis americanus are declining, while introduced European populations are important wetland invaders. We assessed soil conditioning effects of native and non‐native P. australis populations on early and late seedling survival of native and introduced wetland plants. We further used a soil biocide treatment to assess the role of soil fungi on seedling survival. Survival of seedlings in soils colonized by P. australis was either unaffected or negatively affected; no species showed improved survival in P. australis‐conditioned soils. Population of P. australis was a significant factor explaining the response of seedlings, but origin (native or non‐native) was not a significant factor. Synthesis: Our results highlight the importance of phylogenetic control when assessing impacts of invasive species to avoid conflating general plant traits with mechanisms of invasive success. Both native (noninvasive) and non‐native (invasive) P. australis populations reduced seedling survival of competing plant species. Because soil legacy effects of native and non‐native P. australis are similar, this study suggests that the close phylogenetic relationship between the two populations, and not the invasive status of introduced P. australis, is more relevant to their soil‐mediated impact on other plant species.  相似文献   

19.
植物多样性而非其土壤遗留效应影响外来植物入侵 植物多样性可以影响外来植物入侵,然而植物多样性的土壤遗留效应是否能够影响外来植物入侵目前仍不清楚。植物多样性能够改变土壤微生物群落和土壤理化性质,这种遗留效应可能会对该土壤中外来植物的生长产生影响。因此,我们假设植物多样性的土壤遗留效应会影响外来植物的入侵。为了检验该假说,我们开展了一个两阶段的植物-土壤反馈实验。在土壤驯化阶段,我们将12个植物物种(4种禾草植物、3种豆科植物和5种杂类草植物)分别单独种植,或者随机选择8个物种(包含3个功能型)混合种植在土壤中。在反馈阶段,我们将入侵植物三叶鬼针草(Bidens pilosa)分别与本地禾草荩草(Arthraxon hispidus)、本地杂类草翅果菊(Pterocypsela indica)或者同时与荩草和翅果菊种植在被驯化过的土壤中。研 究结果显示,三叶鬼针草相对于其本地竞争植物的生长取决于驯化植物和竞争植物物种的功能型。驯化植物的多样性对三叶鬼针草与其本地竞争植物之间的生长差异没有显著影响。然而,随着本地竞争植物物种多样性的增加,三叶鬼针草相对于其本地竞争植物的生长显著降低。这些结果表明,当前的植物多样性可以通过增加入侵植物和本地植物之间的生长不平衡性来减少外来植物的入侵。但是,植物多样性的土壤遗留效应对外来植物入侵的影响可能很小。  相似文献   

20.
Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via ‘cross-facilitation’ of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as ‘nurse’species in restoration efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号