首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Phylogenetic relationships in the genus Anthyllis (Leguminosae: Papilionoideae: Loteae) were investigated using data from the nuclear ribosomal internal transcribed spacer regions (ITS) and three plastid regions (psbA-trnH intergenic spacer, petB-petD region and rps16 intron). Bayesian and maximum parsimony (MP) analysis of a concatenated plastid dataset recovered well-resolved trees that are topologically similar, with many clades supported by unique indels. MP and Bayesian analyses of the ITS sequence data recovered trees that have several well-supported topological differences, both among analyses, and to trees inferred from the plastid data. The most substantial of these concerns A. vulneraria and A. lemanniana, whose placement in the parsimony analysis of the ITS data appears to be due to a strong long-branch effect. Analysis of the secondary structure of the ITS1 spacer showed a strong bias towards transitions in A. vulneraria and A. lemanniana, many of which were also characteristic of certain outgroup taxa. This may contribute to the conflicting placement of this clade in the MP tree for the ITS data. Additional conflicts between the plastid and ITS trees were more taxonomically focused. These differences may reflect the occurrence of reticulate evolution between closely related species, including a possible hybrid origin for A. hystrix. The patterns of incongruence between the plastid and the ITS data seem to correlate with taxon ranks. All of our phylogenetic analyses supported the monophyly of Anthyllis (incl. Hymenocarpos). Although they are often taxonomically associated with Anthyllis, the genera Dorycnopsis and Tripodion are shown here to be more closely related to other genera of Loteae. We infer up to six major clades in Anthyllis that are morphologically well-characterized, and which could be recognized as sections. Four of these agree with various morphology-based classifications, while the other two are novel. We reconstruct the evolution of several morphological characteristics found only in Anthyllis or tribe Loteae. Some of these characters support major clades, while others show evidence of homoplasy within Anthyllis.  相似文献   

2.
Evolutionary relationships among representatives of Apiaceae (Umbelliferae) subfamily Apioideae have been inferred from phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacer (ITS 1 and ITS 2) and plastid rpoC1 intron sequences. High levels of nucleotide sequence variation preclude the use of the ITS region for examining relationships across subfamilial boundaries in Apiaceae, whereas the rpoC1 intron is more suitably conserved for family-wide phylogenetic study but is too conserved for examining relationships among closely related taxa. In total, 126 ITS sequences from subfamily Apioideae and 100 rpoC1 intron sequences from Apiaceae (all three subfamilies) and outgroups Araliaceae and Pittosporaceae were examined. Phylogenies estimated using parsimony, neighbor-joining, and maximum likelihood methods reveal that: (1) Apiaceae subfamily Apioideae is monophyletic and is sister group to Apiaceae subfamily Saniculoideae; (2) Apiaceae subfamily Hydrocotyloideae is not monophyletic, with some members strongly allied to Araliaceae and others to Apioideae + Saniculoideae; and (3) Apiaceae subfamily Apioideae comprises several well-supported subclades, but none of these coincide with previously recognized tribal divisions based largely on morphological and anatomical characters of the fruit. Four major clades in Apioideae are provisionally recognized and provide the framework for future lower level phylogenetic analyses. A putative secondary structure model of the Daucus carota (carrot) rpoC1 group II intron is presented. Of its six major structural domains, domains II and III are the most, and domains V and VI the least, variable.  相似文献   

3.
The figwort genus Scrophularia (Scrophulariaceae), widespread across the temperate zone of the Northern Hemisphere, comprises about 250 species and is a taxonomically challenging lineage displaying large morphological and chromosomal diversity. Scrophularia has never been examined in a large-scale phylogenetic and biogeographic context and represents a useful model for studying evolutionary history in the context of reticulation. A comprehensively sampled phylogeny of Scrophularia was constructed, based on nuclear ribosomal (ITS) and plastid DNA sequences (trnQ-rps16 intergenic spacer, trnL-trnF region) of 147 species, using Bayesian inference and maximum likelihood approaches. Selected individuals were cloned. A combination of coding plastid indels and ITS intra-individual site polymorphisms, and applying Neighbor-Net and consensus network methods for adequate examination of within-dataset uncertainty as well as among-dataset incongruence, was used to disentangle phylogenetic relationships. Furthermore, divergence time estimation and ancestral area reconstruction were performed to infer the biogeographic history of the genus. The analyses reveal significant plastid-nuclear marker incongruence and considerable amounts of intra-individual nucleotide polymorphism in the ITS dataset. This is due to a combination of processes including reticulation and incomplete lineage sorting, possibly complicated by inter-array heterogeneity and pseudogenization in ITS in the presence of incomplete concerted evolution. Divergence time estimates indicate that Scrophularia originated during the Miocene in Southwestern Asia, its primary center of diversity. From there, the genus spread to Eastern Asia, the New World, Europe, Northern Africa, and other regions. Hybridization and polyploidy played a key role in the diversification history of Scrophularia, which was shaped by allopatric speciation in mountainous habitats during different climatic periods.  相似文献   

4.
东南亚五加科包含14个属约500种,本文应用ITS片段对该区五加科植物的进化关系作了初步研究.研究显示该地区五加科植物具有复杂的起源,很多属属于亚洲掌状复叶类群或Hedereae族的一支中.该区特有类群Harmsiopanax形态上非常特殊,但其系统位置尚未不明朗.在Brassaiopsis属中,有几种形态差异较大的种,但它们属同一单系,加之各种问ITS序列差异较小,故应是新近起源于马来亚半岛和苏门达腊岛的种类.Wardenia simplex聚类在Brassaiopsis一支中,故不支持将Wardenia作为独立的属.东南亚地区对于Schefflera属的发育非常重要,已有的证据显示该区的Schefflera属植物属于该属的Heptapleumm类群.马来亚与泰国南部的Dendropanax lancifolius并没有与Dendropanax属的核心类群聚在一起,其系统地位需进一步研究.Macropanax maingayi是非常特殊的一个种,曾被独立分出,成立了单种属Hederopsis.本文的分析清楚表明它属于Macropanax属.Aralia merrillii因为其不同寻常的攀缘特性而被独立出来,建立了单种属Acanthophora,但ITS序列分析支持将它置于Aralia属中.新增的取样继续支持Arthrophyllum的单系性.Osmoxylon的原初分布范围在东南亚,它是五加科系统进化树上孤立的类群.  相似文献   

5.
Ding G  Zhang D  Yu Y  Zhao L  Zhang B 《Gene》2012,506(2):400-403
Phylogenetic relationship of Limonium and other genera of Plumbaginaceae in China were studied using the cp rbcL, matK and the intergene spacer of trnL-trnF. The analysis showed that Plumbaginaceae was strongly supported monophyletic group sister to Polygonacea, and two tribes were comfirmed by phylogenetic analysis in Plumbaginaceae. Preliminary genetic diversity of Limonium sinense in China was also analyzed in this study by nrDNA (ITS) and cp DNA (two regions of intergenic spacers, trnL-trnF and psbA-trnH). The results showed that the population genetic diversity was low perhaps for human activities and breeding system of this species. These results have been used to understand the evolutionary and demographic history of L. sinense, which is a requisite to establish efficient conservation measures for this species.  相似文献   

6.
The molecular phylogeny of Senecio sect. Jacobaea (Asteraceae; Senecioneae) was studied to clarify species composition and interspecific relationships of Senecio sect. Jacobaea. This information is necessary for studies seeking explanations of the evolutionary success of Senecio, in terms of high species numbers and the evolution of chemical defense mechanisms. Parsimony analyses with 60 species of the tribe Senecioneae, representing 23 genera and 11 sections of Senecio, based on DNA sequence data of the plastid genome (the trnT-L intergenic spacer, the trnL intron, and two parts of the trnK intron, flanking both sides of the matK gene) and nuclear genome (ITS1, 5.8S, and ITS2 gene and spacers) show that sect. Jacobaea is a strongly supported monophyletic group. Fifteen species have been identified as members of section Jacobaea, including three species that have been consistently ascribed to this section in taxonomic literature and 12 species that were either placed in other sections of Senecio or not exclusively ascribed to sect. Jacobaea. This section was traditionally circumscribed as a group of European, biennial, or perennial herbs with pinnately incised leaves, but the results of this study show that one annual species, a species from northeastern Asia, and a species growing in the Himalayas are members of sect. Jacobaea as well. Furthermore, not all species in the section have pinnately incised leaves. The genera Emilia, Packera, and Pseudogynoxys form the sister clade of sect. Jacobaea, but this relationship lacks strong bootstrap support and thus remains provisional.  相似文献   

7.
8.
The genus Pimpinella L. comprises about 150 species, being one of the largest genera within the family Apiaceae (subfamily Apioideae). Previous molecular phylogenetic studies have shown that Pimpinella is a taxonomically complex group. In this study, evolutionary relationships among representatives from Western Europe have been inferred from phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacer (ITS 1 and ITS 2) and plastid sequences (trnL intron and the trnL-F spacer), with a representative sampling included (168 accessions in the ITS analysis, representing 158 species; and 42 accessions in the cpDNA analysis representing 35 taxa of Pimpinella and closely related species). All analyses resolved that Pimpinella is a non-monophyletic group, and Pimpinella’s taxa that grow in Western Europe are part of phylogenetically independent groups that correspond to three different tribes of the subfamily Apioideae: Pimpinelleae (core group), Pyramidoptereae and Smyrnieae.  相似文献   

9.
Morphological and molecular phylogenetic studies show that there is a close relationship between Coffea and Psilanthus. In this study we reassess species relationships based on improved species sampling for Psilanthus, including P. melanocarpus, a species that shares morpho‐taxonomic characters of both genera. Analyses are performed using parsimony and Bayesian inference, on sequence data from four plastid regions [trnL–F intron, trnL–F IGS, rpl16 intron and accD–psa1 intergenic spacer (IGS)] and the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (ITS 1/5.8S/ITS 2). Several major lineages with geographical coherence, as identified in previous studies based on smaller and larger data sets, are supported. Our results also confirm previous studies showing that the level of sequence divergence between Coffea and Psilanthus species is negligible, particularly given the much longer branch lengths separating other genera of tribe Coffeeae. There are strong indications that neither Psilanthus nor Coffea is monophyletic. Psilanthus melanocarpus is nested with the CoffeaPsilanthus clade, which means that there is only one critical difference between Coffea and Psilanthus; the former has a long‐emergent style and the latter a short, included style. Based on these new data, in addition to other systematically informative evidence from a broad range of studies, and especially morphology, Psilanthus is subsumed into Coffea. This decision increases the number of species in Coffea from 104 to 124, extends the distribution to tropical Asia and Australasia and broadens the morphological characterization of the genus. The implications for understanding the evolutionary history of Coffea are discussed. A group of closely related species is informally named the ‘Coffea liberica alliance’. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 167 , 357–377.  相似文献   

10.
Valerianaceae is a relatively small (ca. 350 species), but morphologically diverse angiosperm clade. Sequence data from the entire ndhF gene, the trnL-F intergenic spacer region, the trnL intron, the matK region, the rbcL-atpB intergenic spacer region and internal transcribed spacer (ITS) region of nuclear ribosomal DNA were collected for 21 taxa within Dipsacaceae and Valerianaceae (1 and 20, respectively). These data were included in several phylogenetic analyses with previously published sequences from Dipsacales. Results from these analyses (maximum parsimony, maximum likelihood, and Bayesian analysis) are in strong agreement with many of the conclusions from previous studies, most importantly: (1) Valerianaceae is sister to Dipsacaceae; (2) Triplostegia is more closely related to species of Dipsacaceae than to Valerianaceae; and (3) Valeriana appears not to be monophyletic, with Valeriana celtica falling outside the remainder of the species of Valeriana sampled here (with very strong support). With the exception of V. celtica, these data support two major clades within Valeriana; one that is exclusively New World and another that is distributed in both the Old and New World. Although the species of Valerianaceae and its sister group Dipsacaceae plus Triplostegia, are widely distributed in the Northern Hemisphere, and the data imply that Valerianaceae diversified initially in Asia (the Himalayan Patrinia and Nardostachys falling at the base of the clade), the center of modern species diversity for the group is in the Andes of South America with as many as 175 species restricted to that region. Although the exclusively South American taxa form a clade in the chloroplast and combined ITS and chloroplast analyses, support values tend to be low. Future studies will need to include additional data, in the form of both characters and taxa, before any strong conclusions about the character evolution, diversification, and biogeography of the South American valerians can be made.  相似文献   

11.
Sequences of the chloroplast trnC-trnD region and the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were obtained for all species of Panax L. (the ginseng plant genus, Araliaceae) to reconstruct phylogenetic relationships. The trnC-trnD phylogeny is congruent with the ITS phylogeny for the diploid taxa of Panax. This study is the first use of the trnC-trnD sequence data for phylogenetic analysis at the interspecific level. We evaluated this DNA region for its phylogenetic utility at the lower taxonomic level for flowering plants. The trnC-trnD region includes the trnC-petN intergenic spacer, the petN gene, the petN-psbM intergenic spacer, the psbM gene, and the psbM-trnD intergenic spacer. The petN and psbM genes are small, 90 and 104-114 bp across angiosperms, respectively, and have conserved sequences. We have designed universal amplification and sequencing primers within these two genes. Using these primers, we have successfully amplified the entire trnC-trnD region for a diversity of flowering plant groups, including Aralia L. (Araliaceae), Calycanthus L. (Calycanthaceae), Corylus L. (Betulaceae), Hamamelis L. (Hamamelidaceae), Hydrocotyle L. (Apiaceae), Illigera Blume (Hernandiaceae), Nelumbo Adans. (Nelumbonaceae), Nolana L. ex L.f. (Solanaceae), Prunus L. (Rosaceae), and Staphylea L. (Staphyleaceae). In Panax, the trnC-trnD region provides a similar number of informative phylogenetic characters as the ITS regions and a slightly higher number of informative characters than the chloroplast ndhF gene. We thus demonstrate the utility of the trnC-trnD region for lower-level phylogenetic studies in flowering plants.  相似文献   

12.
13.
The Balkan Peninsula is known to be one of the most diverse and species-rich parts of Europe, but its biota has gained much less attention in phylogenetic and evolutionary studies compared to other southern European mountain systems. We used nuclear ribosomal internal transcribed spacer (ITS) sequences and intron sequences of the chloroplast gene rps16 to examine phylogenetic and biogeographical patterns within the genus Heliosperma (Sileneae, Caryophyllaceae). The ITS and rps16 intron sequences both support monophyly of Heliosperma, but the data are not conclusive with regard to its exact origin. Three strongly supported clades are found in both data sets, corresponding to Heliosperma alpestre, Heliosperma macranthum and the Heliosperma pusillum clade, including all other taxa. The interrelationships among these three differ between the nuclear and the plastid data sets. Hierarchical relationships within the H. pusillum clade are poorly resolved by the ITS data, but the rps16 intron sequences form two well-supported clades which are geographically, rather than taxonomically, correlated. A similar geographical structure is found in the ITS data, when analyzed with the NeighbourNet method. The apparent rate of change within Heliosperma is slightly higher for rps16 as compared to ITS. In contrast, in the Sileneae outgroup, ITS substitution rates are more than twice as high as those for rps16, a situation more in agreement with what has been found in other rate comparisons of noncoding cpDNA and ITS. Unlike most other Sileneae ITS sequences, the H. pusillum group sequences display extensive polymorphism. A possible explanation to these patterns is extensive hybridization and gene flow within Heliosperma, which together with concerted evolution may have eradicated the ancient divergence suggested by the rps16 data. The morphological differentiation into high elevation, mainly widely distributed taxa, and low elevation narrow endemics is not correlated with the molecular data, and is possibly a result of ecological differentiation.  相似文献   

14.
The Aizoaceae is the largest family of leaf succulent plants, and most of its species are endemic to southern Africa. To evaluate subfamilial, generic, and tribal relationships, we produced two plastid DNA data sets for 91 species of Aizoaceae and four outgroups: rps16 intron and the trnL-F gene region (both the trnL intron and the trnL-F intergenic spacer). In addition, we generated two further plastid data sets for 56 taxa restricted to members of the Ruschioideae using the atpB-rbcL and the psbA-trnH intergenic spacers. In the combined tree of the rps16 intron and trnL-F gene region, three of the currently recognized subfamilies (Sesuvioideae, Mesembryanthemoideae, and Ruschioideae) are each strongly supported monophyletic groups. The subfamily Tetragonioideae is polyphyletic, with Tribulocarpus as sister to the Sesuvioideae and Tetragonia embedded in the Aizooideae. Our study showed that the group consisting of the Sesuvioideae, Aizooideae, and Tetragonioideae does not form a monophyletic entity. Therefore, it cannot be recognized as a separate family in order to accommodate the frequently used concept of the Mesembryanthemaceae or "Mesembryanthema," in which the subfamilies Mesembryanthemoideae and Ruschioideae are included. We also found that several genera within the Mesembryanthemoideae (Mesembryanthemum, Phyllobolus) are not monophyletic. Within the Ruschioideae, our study retrieved four major clades. However, even in the combined analysis of all four plastid gene regions, relationships within the largest of these four clades remain unresolved. The few nucleotide substitutions that exist among taxa of this clade point to a rapid and recent diversification within the arid winter rainfall area of southern Africa. We propose a revised classification for the Aizoaceae.  相似文献   

15.

Background and Aims

Laeliinae are a neotropical orchid subtribe with approx. 1500 species in 50 genera. In this study, an attempt is made to assess generic alliances based on molecular phylogenetic analysis of DNA sequence data.

Methods

Six DNA datasets were gathered: plastid trnL intron, trnL-F spacer, matK gene and trnK introns upstream and dowstream from matK and nuclear ITS rDNA. Data were analysed with maximum parsimony (MP) and Bayesian analysis with mixed models (BA).

Key Results

Although relationships between Laeliinae and outgroups are well supported, within the subtribe sequence variation is low considering the broad taxonomic range covered. Localized incongruence between the ITS and plastid trees was found. A combined tree followed the ITS trees more closely, but the levels of support obtained with MP were low. The Bayesian analysis recovered more well-supported nodes. The trees from combined MP and BA allowed eight generic alliances to be recognized within Laeliinae, all of which show trends in morphological characters but lack unambiguous synapomorphies.

Conclusions

By using combined plastid and nuclear DNA data in conjunction with mixed-models Bayesian inference, it is possible to delimit smaller groups within Laeliinae and discuss general patterns of pollination and hybridization compatibility. Furthermore, these small groups can now be used for further detailed studies to explain morphological evolution and diversification patterns within the subtribe.Key words: Laeliinae, Orchidaceae, ITS, trnL intron, trnL-F spacer, matK  相似文献   

16.
BACKGROUND AND AIMS: The phylogenetic relationships between species of Coffea and Psilanthus remain poorly understood, owing to low levels of sequence variation recovered in previous studies, coupled with relatively limited species sampling. In this study, the relationships between Coffea and Psilanthus species are assessed based on substantially increased molecular sequence data and greatly improved species sampling. METHODS: Phylogenetic relationships are assessed using parsimony, with sequence data from four plastid regions [trnL-F intron, trnL-F intergenic spacer (IGS), rpl16 intron and accD-psa1 IGS], and the internal transcribed spacer (ITS) region of nuclear rDNA (ITS 1/5.8S/ITS 2). Supported lineages in Coffea are discussed within the context of geographical correspondence, biogeography, morphology and systematics. KEY RESULTS: Several major lineages with geographical coherence, as identified in previous studies based on smaller data sets, are supported. Other lineages with either geographical or ecological correspondence are recognized for the first time. Coffea subgenus Baracoffea is shown to be monophyletic, but Coffea subgenus Coffea is paraphyletic. Sequence data do not substantiate the monophyly of either Coffea or Psilanthus. Low levels of sequence divergence do not allow detailed resolution of relationships within Coffea, most notably for species of Coffea subgenus Coffea occurring in Madagascar. The origin of C. arabica by recent hybridization between C. canephora and C. eugenioides is supported. Phylogenetic separation resulting from the presence of the Dahomey Gap is inferred based on sequence data from Coffea.  相似文献   

17.
18.
基于ITS序列探讨荻属及其近缘植物的系统发育关系   总被引:1,自引:0,他引:1  
荻属是禾本科的一个小属,其分类地位存在争议。通过测定和从Gen Bank中提取荻属Triarrhena及其近缘植物的ITS序列,以芦苇Phragmites australis为外类群,采用MP(maximum parsimony)和NJ(neighbor-joining)分析方法进行了系统发育分析,这两种方法得到的系统发育树基本相同。荻属和芒属Miscauthus的种类形成一个单系类群;河八王Narenga porphyrocoma与芒属和荻属的植物聚在一起并构成姐妹群;白茅Imperata cylindrica与斑茅Saccharum arundinaceum聚成一小支并构成姐妹群,白茅与荻属的关系较远;荻属植物归并到芒属更为合理,不支持将荻属置入白茅属或另立一属的观点。斑茅与白茅、河八王及蔗茅Erianthus fulvus系统发育关系较近,而与滇蔗茅E.rockii及甘蔗属的竹蔗Saccharum sinense、甘蔗S.officinarum、细秆甘蔗S.barberi和甜根子草S.spontaneum的关系较远。甘蔗属、河八王属及蔗茅属关系复杂,还需要进一步研究。  相似文献   

19.
Recent molecular phylogenetic studies of Solanaceae have identified many well-supported clades within the family and have permitted the creation of a phylogenetic system of classification. Here we estimate the phylogeny for Iochrominae, a clade of Physaleae sensu Olmstead et al. (1999), which contains 34 Andean species encompassing an immense diversity of floral forms and colors. Using three nuclear regions, ITS, the second intron of LEAFY, and exons 2 to 9 of the granule-bound starch synthase gene (waxy), we evaluated the monophyly of the traditional genera comprising Iochrominae and assessed the extent of interspecific hybridization within the clade. Only one of the six traditionally recognized genera of Iochrominae was supported as monophyletic. Further, comparison of the individual nuclear data sets revealed two interspecific hybrid taxa and a third possible case. These hybrid taxa occur in the Amotape-Huancabamba zone, a region between the northern and central Andes that has the greatest diversity of Iochroma species and offers frequent opportunities for hybridization in areas of sympatry. We postulate that periodic hybridization events in this area coupled with pollinator-mediated selection and the potential for microallopatry may have acted together to promote diversification in montane Andean taxa, such as Iochrominae.  相似文献   

20.
The phenomenal advances in sequencing techniques and analytical development during the last decade have provided a unique opportunity to unravel the evolutionary history of lineages under complex patterns of evolution. This is the case of the largest clade of the ginseng family (Araliaceae), the Asian Palmate group (AsPG), where the large internal polytomies and genome incongruences detected in previous studies pointed to a scenario of radiation with hybridization events between genera for the early evolution of the group. In this study, we aim to obtain well-resolved nuclear and plastid phylogenies of the AsPG using Hyb-Seq to evaluate the radiation hypothesis and assess the role of hybridization in the early evolution of the group. We performed concatenated- and coalescent-based phylogenetic analyses from the 936 targeted nuclear loci and 261 plastid loci obtained for 72 species representing 20 genera of the AsPG and the main clades of Araliaceae. The impact of hybridization and incomplete lineage sorting (ILS) was assessed with SNaQ, and genome duplications were evaluated with ChromEvol. Our nuclear and plastid phylogenies are compatible with a scenario of early radiation in the AsPG. Also, the identification of extensive signals of hybridization and ILS behind the genome incongruences supports hybridization as a major driving force during the early radiation. We hypothesize a whole-genome duplication event at the origin of the AsPG, followed by a radiation that led to extensive ILS, which, alongside the early inter-genera hybridization, is obscuring the phylogenetic signal in the early evolution of this major clade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号