首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
曹小玉  李际平  赵文菲  委霞  庞一凡 《生态学报》2020,40(24):9164-9173
林分空间结构的改变直接影响林下草本物种的多样性。以针叶纯林、针阔混交林和常绿阔叶林为研究对象,采用结构方程模型研究了林分空间结构对林下草本物种多样性的影响,并探讨了林分水平空间结构,垂直空间结构以及林木竞争态势对林下草本物种多样性的影响的相对重要性。结果表明,林分水平空间结构对林下草本的物种多样性指数和物种均匀性指数均存在极显著的影响(P<0.001),影响系数高达0.96和0.89,对林下草本物种丰富度存在显著影响(P<0.01),影响系数为0.22;林分垂直空间结对林下草本丰富度和物种均匀性指数均存在极显著的影响(P<0.001),影响系数分别为0.86和0.43,对林下草本物种多样性指数存在显著影响(P<0.01),影响系数为0.16;林木竞争指数与林下草本丰富度和物种多样性指数也均存在极显著的影响(P<0.001),但影响系数较小,分别为-0.47和-0.30,而对林下草本物种均匀性指数未达到显著影响作用(P>0.05),影响系数仅为-0.04。整体上看,林分水平空间结构、垂直空间结构和林木竞争态势均对林下草本物种多样性有较强的影响作用,但从...  相似文献   

3.
常绿阔叶林为东亚亚热带地区的地带性植被, 对该地区的生物多样性维持和社会发展具有重要的意义。由于长期人类活动的影响, 目前我国分布的常绿阔叶林绝大部分为次生常绿阔叶林。探究次生与老龄常绿阔叶林群落特征的差异, 有利于了解人类干扰对亚热带常绿阔叶林的影响, 为其保护和恢复提供依据。本研究在古田山老龄与次生常绿阔叶林内共设置了29个0.04 ha样地, 比较两者在优势种组成、物种和功能多样性以及生物量等方面的差异。结果表明: (1)次生林与老龄林优势种组成相似, 二者均以甜槠(Castanopsis eyrei)、木荷(Schima superba)等典型常绿阔叶林优势种为主, 但这些树种在次生和老龄常绿阔叶林中的优势度次序不同。(2)整体而言, 次生林的Shannon-Wiener指数和功能离散度高于老龄林; 次生林与老龄林的物种Bray-Curtis指数和功能Sørensen指数均无显著差别。(3)就垂直层次而言, 次生林与老龄林在Shannon-Wiener指数和Bray-Curtis指数的差异主要体现在乔木层和灌木层。(4)就群落结构而言, 次生林的植株密度高于老龄林, 但群落水平和个体水平的生物量均显著小于老龄林。上述结果表明, 人类干扰改变了古田山常绿阔叶林群落的多个重要特征, 不同群落特征的恢复过程并不同步。因此, 对常绿阔叶林生物多样性和生态系统功能的保护和恢复需要从多个角度着手。  相似文献   

4.
Tropical montane forests can store and sequester substantial amounts of carbon in above-ground biomass (AGB), but variations in this storage related to location or degradation have not been quantified in the Cameroon Highlands. We established 25 permanent plots (20 m × 40 m) and sampled all trees ≥10 cm diameter following standard RAINFOR protocols. We estimated AGB and investigated variations related to taxonomic and structural forest attributes, including the height–diameter allometry in five forest types (four old-growth dominated by different species and one secondary forest). Secondary forests had significantly lower AGB than old-growth forests (49.4 ± 2.5 vs. >476.3 ± 168.7 Mg/ha, respectively), mostly related to lower basal area and tree height. Significant differences in species composition but not in forest structure or AGB were found between the four types of old-growth forests studied, located at different altitudes and mountains. We discuss the importance of these montane forests for carbon storage and, considering their high diversity and current threats, their potential for carbon finance mechanisms related to both avoided deforestation and forest restoration.  相似文献   

5.
海南岛霸王岭两种典型热带季雨林群落特征   总被引:7,自引:0,他引:7  
刘万德  臧润国  丁易 《生态学报》2009,29(7):3465-3476
热带季雨林为海南岛的隐域性植被类型,分布在与热带低地雨林相似的海拔范围但生境条件较差的局部地段,在旱季其大部分的乔木种类和个体都会落叶.海南岛霸王岭林区分布着海南岛最为典型且大都保存较为完好的热带季雨林原始林,按照其优势树种可划分为海南榄仁(Terminalia hainanensis)季雨林和枫香(Liquidambar formosana)季雨林两种群落类型.通过对霸王岭林区两种典型的热带季雨林老龄林群落的样地调查,比较分析了其物种组成、大小结构、多样性、季相变化等特征.结果表明:海南岛热带季雨林群落中物种优势度明显,具有明显的标志种--海南榄仁和枫香.海南榄仁群落具有较高的灌木物种丰富度、个体多度及较低的乔木物种丰富度、个体多度和多样性;海南榄仁群落在小径级和低高度级中具有较高的植物个体多度,同时在低高度级中具有较低的物种丰富度,但其它径级和高度级两个群落物种丰富度及个体多度差异均不显著;除灌木落叶物种丰富度海南榄仁群落显著高于枫香群落外,其余各生长型落叶物种丰富度及个体多度两个群落之间均无显著差异;在具刺木质藤本物种丰富度和个体多度上海南榄仁群落与枫香群落差异不显著,但乔木、灌木和木本植物具刺物种丰富度及个体多度海南榄仁群落均显著高于枫香群落.总体来看,海南榄仁群落比枫香群落的季雨林特征明显,是海南岛最为典型的季雨林群落类型.  相似文献   

6.
Studies were undertaken on the floristic composition and stand structure of four 1 hectare plots in the lowland forests of Kurupukari, Guyana. A total of 3897 trees, covering 153 species and 31 plant families were recorded at greater than 5 cm diameter at breast height (dbh). The number of species per hectare ranged from 61 to 84 (>5.0 cm dbh) and 50–71 (>10.0 cm dbh). The total number of trees per hectare varied two-fold between study plots, with 45–50% of the trees within the 5–10 cm size-class. Mean total basal area varied from 32.39–34.63 m2 per 100 m2. The four most dominant plant families represented 43.8% of the total number of trees, while representing only 11.2% of the species. No one plant family dominated in more than one of the four study plots, and all four plots held at least one plant family with more than 20% of the total number of trees. Although 14 tree species were common to all four plots, only 26%–35% of the species were represented by a single tree. Between three and seven species represented 50% of the trees within all size-classes, with species dominance occurring within the highest density plot.These tropical forest types of central Guyana may represent some of the lowest diversity forests in the neotropics, whereby the total number of tree species is relatively limited, typically with six dominant canopy species, but the relative abundance of these species is highly variable between the forest types. Mechanisms influencing the competitive interactions associated with species dominance are discussed in relation to the importance of mycorrhizae and the persistence of species dominance.  相似文献   

7.
Litterfall and its subsequent decomposition are important feedback mechanisms in the intrasystem cycling of nutrients in forest ecosystems. The amount of litterfall and the rate of decomposition are expected to vary with stand age and climate. Over a 2-year period, decomposition of five litter types were measured in two second-growth forest stands and one old-growth stand in the Cascade Mountains of southern Washington state, USA. Both second-growth stands were dominated by Douglas-fir [Pseudotsuga menziesii (Mirb.,) Franco] but one had a significant proportion of red alder (Alnus rubra Bong.), a nitrogen (N) fixer. The old-growth stand was dominated by Douglas-fir and western hemlock [Tsuga heterophylla (Raf.) Sarg.]. All stands had a relatively shallow layer of forest floor mass. The five litter types were placed in each stand to evaluate decomposition patterns. Despite significant differences in stand age, microclimate and mean residence times for carbon (C) and N, the rates of litter mass loss varied only slightly between sites. The relative order of species litter mass loss was: vine maple ≫ salal = western hemlock > Douglas-fir (from the youngest stand) > Douglas-fir (from the N rich stand with red alder). The initial litter lignin concentration, not lignin:N, was the primary determinant of decomposition rates, although the initial N concentration was the predictor for mass loss after 2 years in the N rich Douglas-fir-alder stand. All litter types showed immobilization of N for nearly 2 years. Data for Douglas-fir litter suggest that higher levels of N may retard decomposition of tissues with greater amounts of lignified material. The retention of N by the litter appeared influenced by the nutrient capital of the stands as well as the forest floor C:N ratio. Decomposition was minimal during the cold winter months, but displayed a definitive peak period during early Fall with wet weather, warm soils, and fungal activity. Thus, long-term climatic change effects on forest floor C storage may depend more on changes in seasonality of precipitation changes than just temperature changes.  相似文献   

8.
  1. It is well understood that biotic and abiotic variables influence forest productivity. However, in regard to temperate forests, the relative contributions of the aforementioned drivers to biomass demographic processes (i.e., the growth rates of the survivors and recruits) have not received a great deal of attention. Thus, this study focused on the identification of the relative influencing effects of biotic and abiotic variables in the demographic biomass processes of temperate forests.
  2. This study was conducted in the Changbai Mountain Nature Reserve, in northeastern China. Based on the observational data collected from three 5.2‐hectare forest plots, the annual above‐ground biomass (AGB) increment (productivity) of the surviving trees, recruits, and the total tree community (survivors + recruits) were estimated. Then, the changes in the forest productivity in response to biotic variables (including species diversity, structural diversity, and density variables) along with abiotic variables (including topographic and soil variables) were evaluated using linear mixed‐effect models.
  3. This study determined that the biotic variables regulated the variabilities in productivity. Density variables were the most critical drivers of the annual AGB increments of the surviving trees and total tree community. Structural diversity enhanced the annual AGB increments of the recruits, but diminished the annual AGB increments of the surviving trees and the total tree community. Species diversity and abiotic variables did not have impacts on the productivity in the examined forest plots.
  4. The results highlighted the important roles of forest density and structural diversity in the biomass demographic processes of temperate forests. The surviving and recruit trees were found to respond differently to the biotic variables, which suggested that the asymmetric competition had shaped the productivity dynamics in forests. Therefore, the findings emphasized the need to consider the demographic processes of forest productivity to better understand the functions of forests.
  相似文献   

9.
10.
Aim Predictive species distribution modelling is a useful tool for extracting the maximum amount of information from biological collections and floristic inventories. However, in many tropical regions records are only available from a small number of sites. This can limit the application of predictive modelling, particularly in the case of rare and endangered species. We aim to address this problem by developing a methodology for defining and mapping species pools associated with climatic variables in order to investigate potential species turnover and regional species loss under climate change scenarios combined with anthropogenic disturbance. Location The study covered an area of 6800 km2 in the highlands of Chiapas, southern Mexico. Methods We derived climatically associated species pools from floristic inventory data using multivariate analysis combined with spatially explicit discriminant analysis. We then produced predictive maps of the distribution of tree species pools using data derived from 451 inventory plots. After validating the predictive power of potential distributions against an independent historical data set consisting of 3105 botanical collections, we investigated potential changes in the distribution of tree species resulting from forest disturbance and climate change. Results Two species pools, associated with moist and cool climatic conditions, were identified as being particularly threatened by both climate change and ongoing anthropogenic disturbance. A change in climate consistent with low‐emission scenarios of general circulation models was shown to be sufficient to cause major changes in equilibrium forest composition within 50 years. The same species pools were also found to be suffering the fastest current rates of deforestation and internal forest disturbance. Disturbance and deforestation, in combination with climate change, threaten the regional distributions of five tree species listed as endangered by the IUCN. These include the endemic species Magnolia sharpii Miranda and Wimmeria montana Lundell. Eleven vulnerable species and 34 species requiring late successional conditions for their regeneration could also be threatened. Main conclusions Climatically associated species pools can be derived from floristic inventory data available for tropical regions using methods based on multivariate analysis even when data limitations prevent effective application of individual species modelling. Potential consequences of climate change and anthropogenic disturbance on the species diversity of montane tropical forests in our study region are clearly demonstrated by the method.  相似文献   

11.
Transect counts of butterflies were conducted in the northern part of Ibaraki, central Japan, from 1997 to 2001 at 11 census sites, composed of successive stages of deciduous forest development: grassland (one site, early abandoned stage); cutover land (one site, 1–5 years after clear‐cutting); secondary forests (very young (two sites, 6–9 years), middle (two sites, 16–22 years) and old (two sites, 47–51 years)) and old‐growth natural forests (three sites, ≥124 years old). A total of 86 species and 8858 individual butterflies were recorded by 29 sets (406 times) of transect counts. The species richness (number of species), abundance (number of individuals) and diversity indices (Shannon–Wiener H′ and Simpson's 1–λ) of butterflies were high in the early stages (grassland, cutover land and very young secondary forests) of secondary succession. Typical natural forest species increased with the progress of succession, and the old secondary forests and old‐growth natural forests had similar species composition. In contrast, most of the typical natural grassland species were recorded only in the grassland site. In the cutover land site, the number of individuals of grassland species considerably decreased from the first to the second year; furthermore, only one typical natural grassland species was recorded. Thus, the suitable stage for grassland butterfly species lasts for only 1–2 years after clear‐cutting. Old secondary forests (approximately>50 years old) would be able to give refuge to the forest butterfly species, including typical natural forest species. Based on the results, a practical, forestry‐based plan to conserve butterfly diversity was proposed.  相似文献   

12.
Fire is known to have dramatic consequences on forest ecosystems around the world and on the livelihoods of forest‐dependent people. While the Eastern Ghats of India have high abundances of fire‐prone dry tropical forests, little is known about how fire influences the diversity, composition, and structure of these communities. Our study aimed to fill this knowledge gap by examining the effects of the presence and the absence of recent fire on tropical dry forest communities within the Kadiri watershed, Eastern Ghats. We sampled plots with and without evidence of recent fire in the Eswaramala Reserve Forest in 2008 and 2018. Our results indicate that even though stem density increases in the recently burned areas, species richness is lower because communities become dominated by a few species with fire resistance and tolerance traits, such as thick bark and clonal sprouting. Further, in the presence of fire, the size structure of these fire‐tolerant species shifts toward smaller‐sized, resprouting individuals. Our results demonstrate that conservation actions are needed to prevent further degradation of forests in this region and the ecosystem services they provide.  相似文献   

13.
14.
We documented the relationship between densities of invasive exotic shrubs, distance to road, and successional age of the forest in 14 forested sites throughout central and southern Indiana. Roadways are increasingly abundant, human-made features that can be conduits for the spread of invasive exotic plants in a number of ecosystems. Little is known, however, about the role of roads in eastern deciduous forest ecosystems where road density is high. Further, it is not known whether the distribution of exotic plants along roads depends on the successional age of the forest. In this study, densities of four of seven exotic shrub species declined with increasing distance to the nearest road across all successional ages. Greater densities of exotic shrubs were found in young and mid-successional forests than mature forests. However, there was no interaction between distance to road and forest age, suggesting that the role of roads in the invasion process does not change across forest successional ages. We outline several potential mechanisms that may drive patterns of shrub distribution along roadside edges as a guide for future research.  相似文献   

15.
Abstract. A vegetation survey of semi‐permanent plots was performed in 1977–1980 and in 1997–1998 to study the floristic changes in a mixed deciduous forest situated in a region of intensive livestock breeding. Our aim was to test the hypothesis of allogenic succession in the forest ground vegetation caused by the emissions of the surrounding agricultural activities. During the last 20 years, a significant increase of nitrogen indicators and a decline of moisture indicators were observed. Results were consistent at the community, the plot and the species level. Nitrogen deposition and the lowering of the groundwater table are suggested as the driving forces behind the changes. The results are discussed in the context of current ecological theory concerning resource competition and community diversity.  相似文献   

16.
17.
利用天目山自然保护区内设立的典型亚热带常绿落叶阔叶混交林1 hm~2固定样地为基础,分别对1996年和2012年(时间跨度为16年)的实地调查监测数据进行综合处理分析,包括优势种的生态位宽度、生态位重叠、种间联结和生物量等方面对其群落演替特征进行深入探讨。结果表明:1996年到2012年中,优势种生态位宽度指数下降的有青钱柳(Cyclocarya paliurus)和缺萼枫香(Liquidambar acalycina),而上升较明显的有小叶青冈(Cyclobalanopsis myrsinifolia)和东南石栎(Lithocarpus harlandii);并且2012年优势种相比于1996年生态位重叠程度更高;1996年和2012年胸径(DBH)≥10 cm的乔木树种的总生物量分别为151.03 t和148.53 t,而2012年优势种胸径5—10 cm幼树的总生物量达到10.03 t,增长潜力较大。结果总体上与天目山常绿落叶阔叶混交林演替趋势相吻合,并以此揭示天目山亚热带常绿落叶阔叶混交林群落演替规律提供数据支撑与借鉴。  相似文献   

18.
Size and age structure, spatial analysis, and disturbance history were used to analyse the population structures and regeneration patterns of 8 conifer stands in the central western Cascade Range, Oregon, USA. Variation in forest structure reflected the effects of frequent (20–50 yr) low-intensity fires and treefalls, infrequent (100–200 yr) localised, intense fires, and extensive fires that resulted in stand replacement (every ca 400 yr?).The amount of canopy removed and the size of openings formed by fires and treefalls were important determinants of subsequent forest establishment. Single or several species stands of Pseudotsuga and/or Abies procera, or mixed species stands of Pseudotsuga, Abies procera, Tsuga heterophylla and Abies amabilis established in openings where intense fires had removed most of the canopy trees over several ha. Multi-tiered and multi-aged stands, often containing 400–500 yr-old Pseudotsuga and variously-sized more or less even-aged patches of younger shade tolerant Tsuga heterophylla and/or Abies amabilis, occurred where lower-intensity fires did not kill all overstorey trees or where treefalls occurred after the initial fire.Current regeneration processes are influenced by overstorey composition, the availability and size of canopy openings, and the availability of substrates suitable for regeneration. Tsuga heterophylla and Abies amabilis established under Pseudotsuga menziesii and Abies procera canopies and in small canopy openings (<400 m2) created by windfalls, but rarely under Tsuga. Down logs and stumps were favoured establishment sites for Tsuga.The disturbance regime of fires of low-to moderate-intensity, windfalls, and occasional fires that result in extensive stand replacement contrasts with the pattern of infrequent, catastrophic disturbances proposed for other areas of the Pacific Northwest. Although fires at stand establishment commonly determine much of the composition, structure, and subsequent stand development, canopy replacement by shade tolerant species occurs as the different life histories of the species are expressed in response to various disturbances differing in intensity and frequency. Such a non-equilibrium view of vegetation change is consistent with many other fire-dominated forests of the western United States.  相似文献   

19.
Private forests harbor considerable biodiversity, however, they are under greater threat than reserved areas, particularly from urbanization, agriculture, and intense exploitation for timber and fuel wood. The extent to which they may act as habitats for biodiversity and how level of protection impacts trends in biodiversity and forest structure over time remain underresearched. We contribute to filling this research gap by resampling a unique data set, a detailed survey from 1990 of 22 forests fragments of different ownership status and level of protection near Kampala, Uganda. Eleven of the 22 fragments were lost over 20 years, and six of the remnants reduced in size. Forest structure and composition also showed dramatic changes, with six of the remnant fragments showing high temporal species turnover. Species richness increased in four of the remaining forests over the resample period. Forest ownership affected the fate of the forests, with higher loss in privately owned forests. Our study demonstrates that ownership affects the fate of forest fragments, with private forests having both higher rates of area loss, and of structural and compositional change within the remaining fragments. Still, the private forests contribute to the total forest area, and they harbor biodiversity including IUCN “vulnerable” and “endangered” species. This indicates the conservation value of the fragments and suggests that they should be taken into account in forest conservation and restoration.  相似文献   

20.
Gap characteristics and gap regeneration were studied in three old-growth stands of subalpine coniferous forests in the northern Yatsugatake and the northern Akaishi mountains, central Japan. With the results of the present study and those of a previous study conducted in another locality, general features of gap characteristics and gap regeneration behavior of major tree species in subalpine coniferous forests of central Japan were summarized and discussed. Of the total 237 gaps investigated in the 14.48 ha of forested area, the percentage gap area to surveyed area, gap density and mean gap size were 7.3%, 17.2 ha−1, and 43.3 m2, respectively. The gap size distributions were similar among stands and showed a strong positive skewness with a few large and many small gaps; gaps <40m2 were most frequent and those >200 m2 were rare. Gaps due to the death of multiple canopy trees comprised 44.7% of the total ones. Canopy trees died in various states; standing dead (42.6%) or trunk broken (43.7%) were common and uprooted (12.2%) was an uncommon type of death of canopy trees. These figures indicate that general features of gap characteristics in this forest type are the low proportion of gap area and the high proportions of small gap size and multiple-tree gap formation. In general, shade-tolerantAbies frequently, andTsuga, infrequently, regenerate in gaps from advance regenerations recruited before gap formation, whilePicea and shade-intolerantBetula possibly regenerate in gaps from new individuals recruited after gap formation. Gap successors of conifers occurred in a wide range of gap size and did not show the clear preference to species specific gap size. In old-growth stands without large-scale disturbance (≥0.1 ha in area) of subalpine coniferous forests of central Japan, major tree species may coexist with their different gap-regeneration behaviors and, probably, different life history traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号