首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Pluripotency of embryonic stem cells (ESCs) is maintained by the balancing of several signaling pathways, such as Wnt, BMP, and FGF, and differentiation of ESCs into a specific lineage is induced by the disruption of this balance. Sulfated glycans are considered to play important roles in lineage choice of ESC differentiation by regulating several signalings. We examined whether reduction of sulfation by treatment with the chemical inhibitor chlorate can affect differentiation of ESCs. Chlorate treatment inhibited mesodermal differentiation of mouse ESCs, and then induced ectodermal differentiation and accelerated further neural differentiation. This could be explained by the finding that several signaling pathways involved in the induction of mesodermal differentiation (Wnt, BMP, and FGF) or inhibition of neural differentiation (Wnt and BMP) were inhibited in chlorate-treated embryoid bodies, presumably due to reduced sulfation on heparan sulfate and chondroitin sulfate. Furthermore, neural differentiation of human induced pluripotent stem cells (hiPSCs) was also accelerated by chlorate treatment. We propose that chlorate could be used to induce efficient neural differentiation of hiPSCs instead of specific signaling inhibitors, such as Noggin.  相似文献   

6.
The development of efficient and reproducible culture systems for embryonic stem (ES) cells is an essential pre‐requisite for regenerative medicine. Culture scale‐up ensuring maintenance of cell pluripotency is a central issue, because large amounts of pluripotent cells must be generated to warrant that differentiated cells deriving thereof are transplanted in great amounts and survive the procedure. This study aimed to develop a robust scalable cell expansion system, using a murine embryonic stem cell line that is feeder‐dependent and adapted to serum‐free medium, thus representing a more realistic model for human ES cells. We showed that high concentrations of murine ES cells can be obtained in stirred microcarrier‐based spinner cultures, with a 10‐fold concentration of cells per volume of medium and a 5‐fold greater cell concentration per surface area, as compared to static cultures. No differences in terms of pluripotency and differentiation capability were observed between cells grown in traditional static systems and cells that were replated onto the traditional system after being expanded on microcarriers in the stirred system. This was verified by morphological analyses, quantification of cells expressing important pluripotency markers (Oct‐4, SSEA‐1, and SOX2), karyotype profile, and the ability to form embryoid bodies with similar sizes, and maintaining their intrinsic ability to differentiate into all three germ layers. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

7.
8.
Feeder cells are commonly used to culture embryonic stem cells to maintain their undifferentiated and pluripotent status. Conventionally, mouse embryonic fibroblasts (MEFs), supplemented with leukemia inhibitory factor (LIF), are used as feeder cells to support the growth of mouse embryonic stem cells (mESCs) in culture. To prepare for fresh MEF feeder or for MEF-conditioned medium, sacrifice of mouse fetuses repeatedly is unavoidable in these tedious culture systems. Here we report the discovery of a human endothelial cell line (ECV-304 cell line) that efficiently supports growth of mESCs LIF-free conditions. mESCs that were successfully cultured for eight to 20 passages on ECV-304 feeders showed morphological characteristics similar to cells cultured in traditional feeder cell systems. These cells expressed the stem cell markers Oct3/4, Nanog, Sox2, and SSEA-1. Furthermore, cells cultured on the ECV-304 cell line were able to differentiate into three germ layers and were able to generate chimeric mice. Compared with traditional culture systems, there is no requirement for mouse fetuses and exogenous LIF does not need to be added to the culture system. As a stable cell line, the ECV-304 cell line efficiently replaces MEFs as an effective feeder system and allows the efficient expansion of mESCs.  相似文献   

9.
Embryonic stem cells (ESCs) are promising research materials to investigate cell fate determination since they have the capability to differentiate. Stem cell differentiation has been extensively studied with various microenvironment mimicking structures to modify cellular dynamics associated with the cell-extracellular matrix (ECM) interactions and cell-cell communications. In the current study, our aim was to determine the effect of microenvironmental proteins with different concentrations on the capacity and differentiation capability of mouse ESCs (mESCs), combining the biochemical assays, imaging techniques, Fourier transform infrared (FTIR) spectroscopy, and unsupervised multivariate analysis. Based on our data, coating the surface of mESCs with Matrigel, used as an acellular matrix substrate, resulted in morphological and biochemical changes. mESCs exhibited alterations in their phenotype after growing on the Matrigel-coated surfaces, including their differentiation capacity, cell cycle phase pattern, membrane fluidity, and metabolic activities. In conclusion, mESCs can be stimulated physiologically, chemically, or mechanically to convert them a new phenotype. Thus, identification of ESCs’ behavior in the acellular microenvironment could be vital to elucidate the mechanism of diseases. It might also be promising to control the cell fate in the field of tissue engineering.  相似文献   

10.
Induced pluripotent stem (iPS) cells are important for clinical application and stem cell research. Although human melanoma‐associated antigen A2 (hMAGEA2) expression is known to affect differentiation in embryonic stem cells, its specific role in iPS cells remains unclear. To evaluate the function of hMAGEA2 and its characteristics in iPS cells, we produced hMAGEA2‐overexpressing iPS cells from hMAGEA2‐overexpressing transgenic mice. Although the iPS cells with overexpressed hMAGEA2 did not differ in morphology, their pluripotency, and self‐renewal related genes (Nanog, Oct3/4, Sox2, and Stat3), expression level was significantly upregulated. Moreover, hMAGEA2 contributed to the promotion of cell cycle progression, thereby accelerating cell proliferation. Through embryoid body formation in vitro and teratoma formation in vivo, we demonstrated that hMAGEA2 critically decreases the differentiation ability of iPS cells. These data indicate that hMAGEA2 intensifies the self‐renewal, pluripotency, and degree of proliferation of iPS cells, while significantly repressing their differentiation efficiency. Therefore, our findings prove that hMAGEA2 plays key roles in iPS cells.  相似文献   

11.
12.
The 49-member human ATP binding cassette (ABC) gene family encodes 44 membrane transporters for lipids, ions, peptides or xenobiotics, four translation factors without transport activity, as they lack transmembrane domains, and one pseudogene. To understand the roles of ABC genes in pluripotency and multipotency, we performed a sensitive qRT-PCR analysis of their expression in embryonic stem cells (hESCs), bone marrow-derived mesenchymal stem cells (hMSCs) and hESC-derived hMSCs (hES-MSCs). We confirm that hES-MSCs represent an intermediate developmental stage between hESCs and hMSCs. We observed that 44 ABCs were significantly expressed in hESCs, 37 in hES-MSCs and 35 in hMSCs. These variations are mainly due to plasma membrane transporters with low but significant gene expression: 18 are expressed in hESCs compared with 16 in hES-MSCs and 8 in hMSCs, suggesting important roles in pluripotency. Several of these ABCs shared similar substrates but differ regarding gene regulation. ABCA13 and ABCB4, similarly to ABCB1, could be new markers to select primitive hMSCs with specific plasma membrane transporterlow phenotypes. ABC proteins performing basal intracellular functions, including translation factors and mitochondrial heme transporters, showed the highest constant gene expression among the three populations. Peptide transporters in the endoplasmic reticulum, Golgi and lysosome were well expressed in hESCs and slightly upregulated in hMSCs, which play important roles during the development of stem cell niches in bone marrow or meningeal tissue. These results will be useful to study specific cell cycle regulation of pluripotent stem cells or ABC dysregulation in complex pathologies, such as cancers or neurological disorders.  相似文献   

13.
贾振伟 《遗传》2016,38(7):603-611
线粒体是细胞内重要的细胞器,主要功能是通过氧化磷酸化为细胞生命活动提供能量。近年来,研究表明,在多潜能干细胞(Pluripotent stem cells, PSCs)中线粒体表现出独有的特征,即在多能性状态下,PSCs主要依靠糖酵解提供能量,其分化期间线粒体氧化磷酸化代谢能力逐渐增强。相反,体细胞重编程为多潜能干细胞期间,线粒体氧化磷酸化向糖酵解途径的转变是其成功重编程必需的代谢过程。另外,线粒体通过生物合成和形态结构的动态重塑维持了PSCs多能性、诱导分化及诱导多能干细胞(Induced pluripotent stem cells, iPSCs)的重编程。因此,本文综述了PSCs线粒体形态结构及其在调控PSCs多能性、合成代谢、氧化还原状态的平衡、分化及重新编程中的作用,为深入了解线粒体调控PSCs功能的作用提供理论基础。  相似文献   

14.
15.
Attention has recently paid to the interaction of triphenyl phosphate (TPHP) and body tissues, particularly within the reproductive and development systems, due to its endocrine-disrupting properties. However, the acute effects of TPHP on early embryonic development remain unclear. Here, we used mouse embryonic stem cells (mESC) and zebrafish embryos to investigate whether TPHP is an embryo toxicant. First, we found that continuous exposure of TPHP decreased the proliferation and increased the apoptotic populations of mESCs in a concentration-dependent manner. Results of mass spectrometry showed that the intracellular concentration of TPHP reached 39.45 ± 7.72 µg/g w/w after 3 hr of acute exposure with TPHP (38.35 μM) but gradually decreased from 3 hr to 48 hr. Additionally, DNA damage was detected in mESCs after a short-term treatment with TPHP, which in turn, activated DNA damage responses, leading to cell cycle arrest by changing the expression levels of p53, proliferating cell nuclear antigen, and Y15-phosphorylated Cdk I. Furthermore, our results revealed that short-term treatment with TPHP disturbed cardiac differentiation by decreasing the expression levels of Oct4, Sox2, and Nanog and transiently reduced the glycolysis capacity in mESCs. In zebrafish embryos, exposure to TPHP resulted in broad, concentration-dependent developmental defects and coupled with heart malformation and reduced heart rate. In conclusion, the two models demonstrate that acute exposure to TPHP affects early embryonic development and disturbs the cardiomyogenic differentiation.  相似文献   

16.
Pluripotent stem cells (PSCs) such as embryonic stem cells and induced PSCs can differentiate into all somatic cell types such as cardiomyocytes, nerve cells, and chondrocytes. However, PSCs can easily lose their pluripotency if the culture process is disturbed. Therefore, cell sorting methods for purifying PSCs with pluripotency are important for the establishment and expansion of PSCs. In this study, we focused on dielectrophoresis (DEP) to separate cells without fluorescent dyes or magnetic antibodies. The goal of this study was to establish a cell sorting method for the purification of PSCs based on their pluripotency using DEP and a flow control system. The dielectrophoretic properties of mouse embryonic stem cells (mESCs) with and without pluripotency were evaluated in detail, and mESCs exhibited varying frequency dependencies in the DEP response. Based on the variance in DEP properties, mixed cell suspensions of mESCs can be separated according to their pluripotency with an efficacy of approximately 90%.  相似文献   

17.
干细胞概述   总被引:7,自引:0,他引:7  
林戈  卢光琇 《生命科学》2006,18(4):313-317
干细胞是存在于胚胎和成体中的一类特殊细胞,它能长期地自我更新,在特定的条件下具有分化形成多种终末细胞的能力,不同来源的干细胞分化潜能各异。从早期胚胎内细胞团分离的胚胎干细胞能分化形成个体所有的细胞类型,并具有在体外无限增殖的能力,是最具有临床应用前景和研究价值的干细胞之一。在成体各种组织和器官中也存在成体干细胞,用于维持机体结构和功能的稳态。近期有关成体干细胞可塑性的研究和成体组织中多能干细胞存在的证据扩大了人们对成体干细胞分化潜能的认识。干细胞具有的多向分化潜能和自我更新能力使其成为未来再生医学的重要种子细胞,并成为研究人类早期胚层特化和器官形成、药物筛选以及基因治疗的最佳工具。  相似文献   

18.
In order to direct embryonic stem (ES) cells to differentiate into chondrocytes, a chondrogenic envi-ronment provided by mature chondrocytes was investigated. Flk-1 positive cells sorted from pre-differentiated mouse ES cells were mixed with adult porcine articular chondrocytes, seeded on biodegradable scaffolds, and then implanted subcutaneously into nude mice. The cell-scaffold com-plexes formed cartilage tissues after 4 weeks, which was demonstrated by histology and anti-type II collagen antibody staining. Positive staining of mouse Major Histocompatibility Complex class I molecules confirmed that part of the chondrocytes were derived from mouse ES cells. The current study established a new approach for directing ES cell differentiation.  相似文献   

19.
Induced pluripotent stem (iPS) cells have potential to differentiate into T lymphocytes, however, the actual ability of iPS cells to develop into T lineages is not clear. In this study, we co-cultured iPS cells on OP9 cells expressing the Notch ligand Delta-like 1 (DL1), the iPS cells differentiated into T lymphocytes. In addition, in vitro stimulation of iPS cell-derived T lymphocytes resulted in secretion of IL-2 and IFN-γ. Moreover, adoptive transfer of iPS cell-derived T lymphocytes into Rag-deficient mice reconstituted their T cell pools. These results indicate that iPS cells are able to follow the normal program of T cell differentiation.  相似文献   

20.
胚胎干细胞诱导分化为雄性生殖细胞的研究进展   总被引:2,自引:0,他引:2  
胚胎干细胞(embryonic stem cells,ES细胞)具有自我更新及无限分化潜能,理论上可以分化为生殖细胞。目前,在人及鼠中已有体外诱导ES细胞分化为成熟精子的报道。系统阐述影响ES细胞分化为雄性生殖细胞的内源性及外源性因素,并结合国内外最新研究进展总结其诱导分化方法,展望应用前景,期望为从事相关研究的学者提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号