首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major challenge in neurobiology is to understand the molecular underpinnings of neural circuitry that govern a specific behavior. Once the specific molecular mechanisms are identified, new therapeutic strategies can be developed to treat abnormalities in specific behaviors caused by degenerative diseases or aging of the nervous system. The marine snail Aplysia californica is well suited for the investigations of cellular and molecular basis of behavior because neural circuitry underlying a specific behavior could be easily determined and the individual components of the circuitry could be easily manipulated. These advantages of Aplysia have led to several fundamental discoveries of neurobiology of learning and memory. Here we describe a preparation of the Aplysia nervous system for the electrophysiological and molecular analyses of individual neurons. Briefly, ganglion dissected from the nervous system is exposed to protease to remove the ganglion sheath such that neurons are exposed but retain neuronal activity as in the intact animal. This preparation is used to carry out electrophysiological measurements of single or multiple neurons. Importantly, following the recording using a simple methodology, the neurons could be isolated directly from the ganglia for gene expression analysis. These protocols were used to carry out simultaneous electrophysiological recordings from L7 and R15 neurons, study their response to acetylcholine and quantitating expression of CREB1 gene in isolated single L7, L11, R15, and R2 neurons of Aplysia.  相似文献   

2.
3.
Ge S  Yang CH  Hsu KS  Ming GL  Song H 《Neuron》2007,54(4):559-566
Active adult neurogenesis occurs in discrete brain regions of all mammals and is widely regarded as a neuronal replacement mechanism. Whether adult-born neurons make unique contributions to brain functions is largely unknown. Here we systematically characterized synaptic plasticity of retrovirally labeled adult-born dentate granule cells at different stages during their neuronal maturation. We identified a critical period between 1 and 1.5 months of the cell age when adult-born neurons exhibit enhanced long-term potentiation with increased potentiation amplitude and decreased induction threshold. Furthermore, such enhanced plasticity in adult-born neurons depends on developmentally regulated synaptic expression of NR2B-containing NMDA receptors. Our study demonstrates that adult-born neurons exhibit the same classic critical period plasticity as neurons in the developing nervous system. The transient nature of such enhanced plasticity may provide a fundamental mechanism allowing adult-born neurons within the critical period to serve as major mediators of experience-induced plasticity while maintaining stability of the mature circuitry.  相似文献   

4.
5.
6.
Neuronal migration and subsequent differentiation play critical roles for establishing functional neural circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1 deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons.  相似文献   

7.
In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies.  相似文献   

8.
9.
10.
Neuronal activity enhances the elaboration of newborn neurons as they integrate into the synaptic circuitry of the adult brain. The role microRNAs play in the transduction of neuronal activity into growth and synapse formation is largely unknown. MicroRNAs can influence the expression of hundreds of genes and thus could regulate gene assemblies during processes like activity-dependent integration. Here, we developed viral-based methods for the in vivo detection and manipulation of the activity-dependent microRNA, miR-132, in the mouse hippocampus. We find, using lentiviral and retroviral reporters of miR-132 activity, that miR-132 is expressed at the right place and right time to influence the integration of newborn neurons. Retroviral knockdown of miR-132 using a specific 'sponge' containing multiple target sequences impaired the integration of newborn neurons into the excitatory synaptic circuitry of the adult brain. To assess potential miR-132 targets, we used a whole-genome microarray in PC12 cells, which have been used as a model of neuronal differentiation. miR-132 knockdown in PC12 cells resulted in the increased expression of hundreds of genes. Functional grouping indicated that genes involved in inflammatory/immune signaling were the most enriched class of genes induced by miR-132 knockdown. The correlation of miR-132 knockdown to increased proinflammatory molecular expression may indicate a mechanistic link whereby miR-132 functions as an endogenous mediator of activity-dependent integration in vivo.  相似文献   

11.
12.
13.
Recent advances in the neural stem cell field have provided a wealth of methods for generating large amounts of purified neuronal precursor cells. It has become a question of paramount importance to determine whether these cells integrate and interact with established neural circuitry after engraftment. In principle, neurons have to fulfill three basic functions: receive incoming signals via synapses, compute and forward processed information to other neurons or effector cells. It is anticipated that functionally integrating stem cell-derived donor neurons perform accordingly. Here we provide protocols for the efficient electrophysiological evaluation of engrafted cells and highlight current limitations thereof.  相似文献   

14.
15.
16.
The ability to control and manipulate neuronal activity within an intact mammalian brain is of key importance for mapping functional connectivity and for dissecting the neural circuitry underlying behaviors. We have previously generated transgenic mice that express channelrhodopsin-2 for light-induced activation of neurons and mapping of neural circuits. Here we describe transgenic mice that express halorhodopsin (NpHR), a light-driven chloride pump that can be used to silence neuronal activity via light. Using the Thy-1 promoter to target NpHR expression to neurons, we found that neurons in these mice expressed high levels of NpHR-YFP and that illumination of cortical pyramidal neurons expressing NpHR-YFP led to rapid, reversible photoinhibition of action potential firing in these cells. However, NpHR-YFP expression led to the formation of numerous intracellular blebs, which may disrupt neuronal function. Labeling of various subcellular markers indicated that the blebs arise from retention of NpHR-YFP in the endoplasmic reticulum. By improving the signal peptide sequence and adding an ER export signal to NpHR-YFP, we eliminated the formation of blebs and dramatically increased the membrane expression of NpHR-YFP. Thus, the improved version of NpHR should serve as an excellent tool for neuronal silencing in vitro and in vivo.  相似文献   

17.
18.
To elucidate the intrinsic mechanisms of neurotoxicity induction, including those underlying neural cell death and neurodegeneration, we developed a gain-of-function screen for gene products causing neural cell loss. To identify novel genes with a cell-death-related function in neurons, we screened 4,964 Drosophila GS lines, in which one or two genes from much of the Drosophila genome can be overexpressed. Approximately 0.68% of the GS lines produced phenotypes involving a loss of postmitotic neurons. Of these, we identified and characterized the endd2 gene, which encodes the Drosophila ortholog of Sec61alpha (DSec61alpha), an endoplasmic reticulum protein with protein translocation activity. Ectopic expression of DSec61alpha caused neural cell death accompanied by the accumulation of ubiquitinated proteins, which was mediated by DSec61alpha's translocon activity. This supported our previous observation that the DSec61alpha translocon contributes to expanded polyglutamine-mediated neuronal toxicity, which is also associated with ubiquitinated protein accumulation. These data suggest that the translocon may be a novel component of neural cell death and degeneration pathways. Our approach can be used to identify potential neurotoxic factors within the whole genome, which will increase our understanding of the molecular mechanisms of various types of cell death, including those associated with human neurodegenerative diseases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号