首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To test the hypothesis that increased allocation to reproduction is selected during biological invasion, we compared germination, survival, growth, and reproduction of native vs. introduced populations of the invasive aquatic plant Butomus umbellatus in a common greenhouse environment. Although seedling emergence and establishment did not differ consistently, survival thereafter was twice as high for eight introduced North American than eight native European populations. As predicted, introduced plants were more likely to produce sexual inflorescences and clonal asexual vegetative bulbils, and they invested much more biomass in both reproductive modes. Higher reproductive investment was due to higher proportional allocation of biomass rather than larger plant size. These results are consistent with selection for increased reproduction during range expansion. However, population genetic surveys indicate that recruitment from seed rarely occurs in introduced populations. Hence increased sexual allocation is not an adaptive response to invasion. Although increased clonal reproduction may be advantageous in expanding populations, genetic evidence from introduced populations of B. umbellatus suggests that increased clonal allocation may have arisen via stochastic processes during long-distance transport or a selective filter right at introduction, rather than incremental natural selection during range expansion.  相似文献   

2.
We explored models explaining population cycling in the annual Warea carteri. We modeled the life cycle of W. carteri and compared projected trajectories to independently observed trajectories (up to 16 years) of plants in 74 patches in three populations. We built matrix models with an annual time step for two populations, including four stages, (recently produced seeds, seeds in the seed bank, seedlings, and adults) and five vital rates, summarized in seven transitions. Fluctuations of both observed and modeled populations were evaluated using power spectra, autocorrelation, amplitude, and damping. Observed populations had two point cycling. Observed amplitude was higher in frequently burned populations, reached its maximum 1 year after fire, and then dampened. Asymptotic transition and vital rate elasticities showed that seedling survival was the most important factor for long-term population growth, but transient elasticities showed that recruitment from the seed bank was important during the first years post-fire. Deterministic modeling and elasticity analyses indicated that delayed germination (for 1 year) may explain biennial population cycling. Stochastic models created similar cycling with slower damping than deterministic models, but still had lower amplitudes (especially 1–3 years post-fire) than observed populations. The biennial cycle in W. carteri is likely caused by the delay in seed germination, which creates two overlapping cohorts of plants, much like a strict biennial. Fire initiates the cycle by killing aboveground individuals and promoting seedling recruitment in the first post-fire year.  相似文献   

3.
Eryngium cuneifolium Small. (Apiaceae) is a narrowly distributed endemic found only in Ceratiola ericoides (Florida rosemary)-dominated Florida scrub, a periodically burned, shrub-dominated habitat. Multivariate analyses using 22 ∗∗∗microhabitat characteristics indicated significant microhabitat and time-since-fire effects on survival, growth, and fecundity of 1287 individuals over a 4-yr period. Survival increased with distance to the nearest shrub, and plants in larger open patches had greater survival rates. Neighboring shrubs of Ceratiola ericoides and Calamintha ashei were associated with a higher mortality of E. cuneifolium than other neighboring shrub species. Survival was reduced by two-thirds over 4 yr (14% vs. 42%) for E. cuneifolium near C. ericoides. Sand accretion increased growth and fecundity. With greater time since fire, woody shrubs increasingly dominate and open patches shrink, significantly reducing survival, growth, and fecundity of E. cuneifolium. Effects were particularly dramatic between 2 and 7 yr postfire, when annual mortality increased from <10% to >30% (r = 0.74). This herbaceous species is dependent on an open habitat maintained by periodic fire. Belowground competition or allelopathy from shrubs probably restricts E. cuneifolium to recently burned, open patches within the most xeric parts of Florida scrub.  相似文献   

4.
Seedling establishment has long been believed to be rare on alpine tundra because of predicted life history trade-offs, the clonality of alpine species, and the harshness of the alpine climate. Contrary to the idea that seedlings are rare on alpine tundra, a 4-yr demographic study of seedlings at Niwot Ridge, Colorado, USA, found seedlings at high densities, particularly in wetter plant communities. Higher germination densities were associated with higher soil moistures both across communities and across time. Mortality of seedlings was highest in the first year and decreased in subsequent years. Species' abundances differed between seedling and adult populations. Many forbs that lacked vegetative reproduction were significantly more abundant among seedling populations, and many monocots and clonal forbs were more abundant among adult populations. In a comparison with published demographic rates, seedling recruitment and mortality rates of Niwot Ridge species fell above or within rates for a wide range of perennial species. Therefore, germination and seedling establishment stages are no more limiting to sexual reproduction in alpine plants than in other perennial plants.  相似文献   

5.
Information on reproduction and life history is important for the conservation of endangered plants. We investigated rates of flowering, seed set, and germination in populations of the endangered perennial plant Sedum integrifolium ssp. leedyi. Germination and flowering rates differed significantly among populations, but seed set rate did not. We assayed 26 plant clusters (81 stems) from four of the five known populations for evidence of clonal reproduction using 28 randomly amplified polymorphic DNA (RAPD) markers. Of the 81 stems, 75 had unique genotypes and three pairs had identical genotypes, suggesting that clonal reproduction is infrequent. Flowering, seed set, and germination rates were correlated with our estimates of ratios of effective to actual population sizes (Ne/N), but not with Ne. The single formally protected population may be experiencing inbreeding depression. We grew plants from seed to maturity in a greenhouse, with a germination rate of 77% and survival of 98% of the germinants at 6 mo, suggesting that this will be a viable means of ex situ propagation. Plants flowered 4-6 mo after germination and produced mature fruits 1-2 mo later, suggesting that they have the potential to sexually reproduce in their first or second season of growth.  相似文献   

6.
In the next century, safeguarding plant species against extinction from complete land conversion may require introducing species to novel locations. Although regulatory agencies caution against translocation outside of known historic ranges, when most wild populations and their habitats have been severely altered few viable options may be available for conserving rare plants. We introduced 345 endangered Amorpha herbacea var. crenulata along a pine rockland/transverse glade gradient with similar attributes to historically known occurrences for south Florida, USA, and monitored their survival and growth for five years. The experimental phase addressed: (1) Is the recipient site suitable for colonisation of this species despite hydrological manipulation in the region? (2) Can translocated plants grow equally well in four microhabitats along a gradient within the recipient site? We characterised soil water content, soil nutrient, and vegetation cover to assess the microhabitats at the recipient site. From 2006 to 2008 plants survived in all four microhabitats, but had highest survival in pineland. Translocated plants grew best in microhabitats with less grass cover and higher P content – the pineland and the restoration glade. Through 2008 we observed consistently higher soil water content with less total vegetation cover in pineland and significantly higher P content in the restoration glade.Using 2006–2008 data, we implemented the adaptive management phase, moving 20 plants from the lowest survival microhabitat to the highest survival microhabitat. This tactic improved the survival of plants by 2011, though growth rates of moved plants did not improve. Short-distance translocation, assessing environmental attributes related to plant survival and growth, quantifying similarity of soil, temperature, precipitation, and community as in this study are recommended to evaluate prospective introduction sites for translocations within or outside of range.  相似文献   

7.
Introductions are a critical tool in the recovery of many imperiled species, yet adequate evaluation and development of best practices has lagged. Importantly, long-term post-introduction data are typically lacking, as well as suitable comparisons to wild populations to provide a baseline against which to assess performance. Here, we report on three experimental introductions of Crotalaria avonensis (Fabaceae), a federally endangered perennial herb that is narrowly endemic to scrub of the Lake Wales Ridge in peninsular Florida, U.S.A. We synthesize 10 years of post-introduction monitoring at both the introduced and a nearby, protected wild population to (1) develop best practices for conservation, and (2) evaluate the success of the introduction. First, our study identified best practices that included using transplants propagated from stem cuttings, as well as several factors that may increase seed germination such as habitat choice, seed burial, and litter addition. Second, during the 10 years following the introduction, population density in the introduced population was higher than in a nearby protected, wild population, and a comparison of vital rates revealed that this result was due to relatively high clonal and seedling recruitment rates in the introduced population. Furthermore, the source population, which occurred on unprotected lands, precipitously declined during this time period, further highlighting the importance of safeguarding plants from that population. We report that a new, growing population of C. avonensis has been established to date, with important implications for the species' conservation as well as how introductions are evaluated.  相似文献   

8.
Aquatic plant invasions are often associated with long‐distance dispersal of vegetative propagules and prolific clonal reproduction. These reproductive features combined with genetic bottlenecks have the potential to severely limit genetic diversity in invasive populations. To investigate this question we conducted a global scale population genetic survey using amplified fragment length polymorphism markers of the world’s most successful aquatic plant invader –Eichhornia crassipes (water hyacinth). We sampled 1140 ramets from 54 populations from the native (South America) and introduced range (Asia, Africa, Europe, North America, Central America and the Caribbean). Although we detected 49 clones, introduced populations exhibited very low genetic diversity and little differentiation compared with those from the native range, and ~80% of introduced populations were composed of a single clone. A widespread clone (‘W’) detected in two Peruvian populations accounted for 70.9% of the individuals sampled and dominated in 74.5% of the introduced populations. However, samples from Bangladesh and Indonesia were composed of different genotypes, implicating multiple introductions to the introduced range. Nine of 47 introduced populations contained clonal diversity suggesting that sexual recruitment occurs in some invasive sites where environmental conditions favour seedling establishment. The global patterns of genetic diversity in E. crassipes likely result from severe genetic bottlenecks during colonization and prolific clonal propagation. The prevalence of the ‘W’ genotype throughout the invasive range may be explained by stochastic sampling, or possibly because of pre‐adaptation of the ‘W’ genotype to tolerate low temperatures.  相似文献   

9.
Hurricanes have dramatic effects on forest vegetation, but their effects on shrublands have rarely been studied. We analyzed the effects of three 2004 hurricanes—among the strongest on record in Florida—on vital rates of 12 rare plant species of pyrogenic interior Florida scrub and sandhill. Tree damage varied by vegetation type (being highest in areas with Pinus clausa) and was associated with debris deposition. Most rare species were minimally impacted by hurricanes. The two most frequently damaged species were the shrubs Prunus geniculata (11% of individuals) and Asimina obovata (7%); both were resilient to damage. Prunus geniculata had little mortality during the hurricane year but damaged plants had a temporary (1‐yr) reduction in relative growth rate. Prunus geniculata flowering was unaffected by hurricane damage. Hurricane damage had no effects on vital rates of A. obovata, Eriogonum longifolium var. gnaphalifolium, or Chrysopsis highlandsensis. Other species suffered little or no observable hurricane damage. Of 12 species analyzed, nine had similar annual survival in hurricane and nonhurricane years. Relatively low survival in the hurricane year (compared with other years) was linked to prehurricane drought or prescribed fire in two of three species. Thus, the 2004 hurricanes did not have important effects on populations of interior Florida scrub and sandhill plants, especially herbaceous species. This is in marked contrast to dramatic demographic responses to fire in central Florida and strong effects of hurricanes in coastal Florida, highlighting that these different disturbances may have divergent effects on vegetation and populations over short distances.  相似文献   

10.
Populations of Danthonia sericea from the New Jersey Pine Barrens were investigated as to possible ecological differentiation in moisture tolerances at germination, seedling, and mature plant stages. Field studies had indicated that populations with pubescent lemmas and leaf sheaths are restricted to well-drained sandy upland sites and that relatively glabrous populations are found in open bogs or low wet areas bordering rivers or ponds. Greenhouse studies of responses of clonal and seed materials to saturated, moist, and dry moisture levels showed significant differences among populations in germination, growth, and survival. Reciprocal transplants at upland and bog sites provided a field evaluation (1969–1974) of the survival and performance of the morphological variants in each other's habitat under competitive conditions. Restriction to respective habitats was found to be primarily intolerance of wet site factors for the pubescent plants coupled with an inability of glabrous plants to successfully compete in upland sites.  相似文献   

11.
胡慧  杨雨  包维楷  刘鑫  李芳兰 《植物生态学报》2020,44(10):1028-1039
干旱区植被斑块状分布格局引起的微生境差异对植被更新影响显著。气候变化和人类活动扰动下, 干旱区生态系统微生境多样化, 急需揭示乡土植物定植对不同微生境斑块变化的响应及其种间差异性, 并采用微生境调控技术促进退化生态系统植被恢复。该研究选择岷江干旱河谷区自然分布的灌木、半灌木和裸地微生境斑块, 采用移栽鞍叶羊蹄甲(Bauhinia brachycarpa)幼苗的试验方法, 揭示微生境变化对幼苗定植的影响; 进一步以极端退化的道路边坡为案例, 通过6种乡土植物种子直播试验探讨微生境调控技术及其对乡土植物幼苗定植的促进作用。结果显示, 在自然生态系统中, 裸地斑块上幼苗保存率和生物量显著大于植被斑块, 表明裸地微生境有利于幼苗定植; 养分添加仅对裸地斑块中幼苗生物量积累有促进作用。在裸地斑块中, 叶片生物量所占的比例和比叶面积较小, 相反根和茎生物量所占的比例较大。道路边坡上植被恢复试验结果显示, 6种乡土植物均能较好地适应土石混杂的边坡生境, 多数物种出苗率大于60%; 灌木幼苗保存率大于75%, 并且形成镶嵌式乡土灌草群落结构。地表覆盖和养分添加提高了边坡上种子出苗率和幼苗保存率, 促进了幼苗定植和结构稳定。该研究提供了有效促进工程边坡上乡土植物定植的方法, 可为干旱、半干旱生态系统退化荒坡和工程破坏地乡土植被恢复提供理论依据和技术指导。  相似文献   

12.
Clonal reproduction may facilitate the spread of invasive species by reducing the minimum population size necessary for successful establishment. We used microsatellite markers to reconstruct the composition of founding populations in two regional (Central Africa and Hawaii) and 23 local (near a Gabonese oilfield) invasions of the facultatively parthenogenetic little fire ant. Central Africa had a single dominant queen clone, which appears to have initiated the regional infestation, and then produced numerous other clones by rare sexual reproduction. This interpretation of the data was also supported by the genotype of a worker from the first collection in Africa (Gabon 1913). We found only a single queen clone in Hawaii, likewise indicating a single-clone introduction, most likely from an earlier infestation in Florida. Single-clone introductions also gave rise to the vast majority (92%) of local infestations at our oilfield study site. These results suggest the unusual, largely clonal, reproductive strategy of the little fire ant may enhance its success as an invasive species. However, the occasional sexual production of novel genotypes after the initial introduction may provide genetic flexibility that overcomes shortcomings of pure clonality.  相似文献   

13.
Clonal diversity within plant populations is affected by factors that influence genet (clone) survival and seed recruitment, such as resource availability, disturbance, seed dispersal mechanism, propagule predation and the age of the population. Here we studied a population of Potamogeton pectinatus, a pseudo-annual aquatic macrophyte. Within populations reproduction appears to be mainly asexually through subterranean propagules (tubers), while recruitment via seeds is believed to be relatively unimportant. RAPD markers were used to analyse clonal diversity and genetic variation within the population. Ninety-seven genets were identified among 128 samples taken from eight plots. The proportion of distinguishable genets (0.76) and Simpson's diversity index (0.99) exhibited high levels of clonal diversity compared to other clonal plants. According to an analysis of molecular variance (amova) most genetic variation occurred between individuals within plots (93-97%) rather than between plots (8-3%). These results imply that sexual reproduction plays an unexpectedly important role within the population. Nevertheless, autocorrelation statistics revealed a spatial genetic structure resulting from clonal growth. In contrast to genetic variation, clonal diversity was affected by several ecological factors. Water depth and silt content had direct negative effects on clonal diversity. Tuber predation by Bewick's swans had an unexpected indirect negative effect on clonal diversity through reducing the tuber-bank biomass in spring, which on its turn was positively correlated to clonal diversity. The disturbance by swans, therefore, did not enhance seed recruitment and thus clonal diversity; on the contrary, heavily foraged areas are probably more prone to stochastic loss of genets leading to reduced clonal diversity.  相似文献   

14.
The phenology of germination, vegetative growth and sexual reproduction in the annual Chamaesyce maculata (L.) Small (Euphorbiaceae) were investigated in a natural population in western Japan. Seedlings emerged from mid-June to early October, with three peaks: mid-June, late July and late August. Plants that emerged in June commenced sexual reproduction from late July, and thereafter both vegetative growth and sexual reproduction occurred together until early November, the plants showing no switching from vegetative growth to sexual reproduction. Seedlings that emerged in June and July suffered high mortality, but most seedlings that emerged from August onward survived until the reproductive stage. The minimum size for reproduction was largest for plants that emerged early in the season, and it decreased with a delay in seedling emergence. The late emergence of seedlings that resulted in low reproductive output may be to some extent compensated for by the increased probability of survival in the seedling stage. A transplant experiment clarified that C. maculata can repeat a maximum of three overlapping generations within a year. Multiple generations per year were attained by non-dormant seeds produced in the first and second generations and clearly resulted in an increased reproductive output per year. The life cycle with multiple overlapping generations may have been acquired in habitats where unpredictable disturbance results in temporally unsuitable conditions for germination, vegetative growth and sexual reproduction of annual plants, but where suitable conditions frequently continue over a period longer than the single generation time of annual plants.  相似文献   

15.

Background and Aims

Invasive clonal plants have two reproduction patterns, namely sexual and vegetative propagation. However, seedling recruitment of invasive clonal plants can decline as the invasion process proceeds. For example, although the invasive clonal Wedelia trilobata (Asteraceae) produces numerous seeds, few seedlings emerge under its dense population canopy in the field. In this study it is hypothesized that light limitation and the presence of a thick layer of its own litter may be the primary factors causing the failure of seedling recruitment for this invasive weed in the field.

Methods

A field survey was conducted to determine the allocation of resources to sexual reproduction and seedling recruitment in W. trilobata. Seed germination was also determined in the field. Effects of light and W. trilobata leaf extracts on seed germination and seedling growth were tested in the laboratory.

Key Results

Wedelia trilobata blooms profusely and produces copious viable seeds in the field. However, seedlings of W. trilobata were not detected under mother ramets and few emerged seedlings were found in the bare ground near to populations. In laboratory experiments, low light significantly inhibited seed germination. Leaf extracts also decreased seed germination and inhibited seedling growth, and significant interactions were found between low light and leaf extracts on seed germination. However, seeds were found to germinate in an invaded field after removal of the W. trilobata plant canopy.

Conclusions

The results indicate that lack of light and the presence of its own litter might be two major factors responsible for the low numbers of W. trilobata seedlings found in the field. New populations will establish from seeds once the limiting factors are eliminated, and seeds can be the agents of long-distance dispersal; therefore, prevention of seed production remains an important component in controlling the spread of this invasive clonal plant.  相似文献   

16.
? Many plants combine sexual reproduction with vegetative propagation, but how trade-offs between these reproductive modes affect fitness is poorly understood. Although such trade-offs have been demonstrated at the level of individual shoots (ramets), there is little evidence that they scale up to affect genet fitness. For hermaphrodites, reproductive investment is further divided between female and male sexual functions. Female function should generally incur greater carbon costs than male function, which might involve greater nitrogen (N) costs. ? Using a common garden experiment with diclinous, clonal Sagittaria latifolia we manipulated investment in reproduction through female and male sex functions of 412 plants from monoecious and dioecious populations. ? We detected a 1?:?1 trade-off between biomass investment in female function and clonal reproduction. For male function, there was no apparent trade-off between clonal and sexual reproduction in terms of biomass investment. Instead, male function incurred a substantially higher N cost. ? Our results indicate that: trade-offs between investment in clonal propagation and sexual reproduction occur at the genet level in S.?latifolia; and sexual reproduction interferes with clonal expansion, with investment in female function limiting the quantity of clonal propagules produced, and investment in male function limiting the nutrient content of clonal propagules.  相似文献   

17.
Ardisia crenata (Myrsinaceae), an evergreen shrub with attractive red fruits introduced from Japan to the USA for ornamental purpose, invades the understory of mesic hardwood forests, forming dense patches (up to 300 stems per m2), and competitively displaces native understory plants by creating dense local shade. Comparison of the wild genotype that grows in mature evergreen broadleaf forests in central Kyushu, Japan, with the ecotype invading north central Florida revealed how selection for desirable cultivars might have inadvertently selected for traits that enhance the invasive potential of the species. In Japanese wild populations in deeply shaded evergreen forests, natural selection apparently maintained efficient architecture with a low degree of self-shading and large seed mass to enhance seedling shade tolerance. Cultivar selection for showy appearance can explain the greater fecundity but smaller seed size observed in the Florida populations compared to the Japanese population. Artificial selection for densely foliated appearance can also explain the greater degree of self-shading and less-efficient light use in the Florida genotype compared to the Japanese wild type grown under a common environment. Furthermore, the Florida ecotype allocated more biomass to root carbohydrate storage. These trait modifications resulted in slower growth rates, but greater competitive ability to cast shade upon neighbors and higher resprouting potential in the Florida populations. How traits are modified through the processes of artificial selection and cultivation must be taken into consideration in the evolutionary ecology of many other invasive plants introduced as ornamental plants.  相似文献   

18.
为什么自然条件下沙地柏种群以无性更新为主   总被引:11,自引:1,他引:11       下载免费PDF全文
 基于调查、实验和文献资料,作者探讨了沙地柏(Sabina vulgaris)种群的繁殖特征和更新特征。1)根原基是沙地柏进行营养繁殖的结构基础,由根原基发育而成的不定根能够吸收充足的土壤资源供给萌生苗需要,因此定居的萌生苗能够独立维持。2)沙地柏同时具有营养繁殖和有性繁殖,因而沙地柏种群可通过无性更新和有性更新实现维持。3)种子质量极差、萌发率低和实生苗存活率低是制约沙地柏种群有性更新的3个“瓶颈”。4)沙地柏的营养繁殖力强、萌生苗存活率高、繁殖体的产生途径多样,这使自然条件下沙地柏种群以无性更新为主。  相似文献   

19.
Generative and vegetative reproduction of diploid and triploidButomus umbellatus L., and growth and biomass production of both cytotypes under two different nutrient levels were compared. Seedling survival was studied under controlled conditions in a growth chamber; the response of plants to different nutrient conditions was studied in experimental garden. Both cytotypes do not differ in seed germination and seedling survival. Triploids produce more aboveground and underground biomass, more numerous lateral rhizome buds, and have significantly higher flowering stalks. Low generative reproduction (limited seed production) in triploids is compensated for by more intensive vegetative reproduction. High nutrient level appeared to be stressful for plants of both cytotypes: it limits plant growth and causes plant mortality. Triploids are more viable than diploids in this case, which may be important for their survival under conditions of high trophic level.  相似文献   

20.
We conducted field experiments manipulating lichens, shrubs, and herbs along a time-since-fire gradient and assessing effects on three endemic herbaceous species of Florida scrub: Eryngium cuneifolium, Hypericum cumulicola, and Polygonella basiramia. Responses included seed germination, survival, biomass, and fecundity. Transplants into recently burned patches generally had higher survival, larger biomass, and greater reproductive output than transplants into long-unburned patches. Open areas and sites near oaks frequently were more favorable than sites near Florida rosemary. Ground lichens did not affect germination but increased mortality rate of seedlings. Neighboring small shrubby and herbaceous species did not affect the performance of these species. Of the three species, naturally occurring E. cuneifolium were farthest from large shrubs, and their microhabitats had the least ground lichens and shrubs. Eryngium cuneifolium and H. cumulicola are capable of forming persistent seed banks and their recruitment after fire depends mostly on these dormant seeds. Polygonella basiramia relies on seed dispersal and immediate seed germination to colonize recently burned patches. Management for these species should involve variable fire regimes to allow all three species to persist along with many other scrub endemics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号